A Decade of Giant Virus Genomics: Surprising Discoveries Opening New Questions


During the last decade, viral studies have investigated truly large viruses for the first time in the history of biology. Those giants of viruses include Acanthamoeba polyphaga mimivirus with a 1.18 Mbp dsDNA genome encoding more than 1,000 genes and a recently isolated “Pandoravirus salinus” (currently unclassified) with a 2.77 Mbp dsDNA genome encoding 2,556 genes. They are part of the classically defined nucleocytoplasmic large DNA virus group, but they generate large virions that are comparable in size with bacterial cells. The discovery of giant viruses has triggered the reexamination of classical virus perceptions, such as “viruses are non-organisms,” and has elicited provocative proposals related to the nature of viruses. In this chapter, we review the fascinating biology of giant viruses uncovered by genomics during recent years. Then we introduce several proposed hypotheses related to the origin and nature of those giant viruses, including the fourth domain hypothesis, the viral eukaryogenesis hypothesis, and the virocell concept. Giant virus research is still in its infancy, but is likely to reveal increasingly fascinating biological phenomena and is expected to engender a novel evolutionary perspective unifying the viral and cellular worlds.


Cytosol Archaea Chlorella Timothy 


  1. 1.
    Lwoff A. The concept of virus: the third Marjory Stephenson memorial lecture. J Gen Microbiol. 1957;17:239–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM. The 1.2-megabase genome sequence of Mimivirus. Science. 2004;306:1344–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Rossmann MG. Structure of viruses: a short history. Q Rev Biophys. 2013;46:133–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Claverie JM, Abergel C, Ogata H. Mimivirus. Curr Top Microbiol Immunol. 2009;328:89–121.PubMedGoogle Scholar
  5. 5.
    Legendre M, Santini S, Rico A, Abergel C, Claverie JM. Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J. 2011;8:99.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Legendre M, Audic S, Poirot O, Hingamp P, Seltzer V, Byrne D, Lartigue A, Lescot M, Bernadac A, Poulain J, Abergel C, Claverie JM. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 2010;20:664–74.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Yutin N, Wolf YI, Raoult D, Koonin EV. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol J. 2009;6:223.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, Cheng XW, Federici BA, Van Etten JL, Koonin EV, La Scola B, Raoult D. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 2013;158:2517–21.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Van Etten JL, Meints RH. Giant viruses infecting algae. Annu Rev Microbiol. 1999;53:447–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Claverie JM, Ogata H, Audic S, Abergel C, Suhre K, Fournier PE. Mimivirus and the emerging concept of “giant” virus. Virus Res. 2006;117:133–44.PubMedCrossRefGoogle Scholar
  11. 11.
    Ghedin E, Claverie JM. Mimivirus relatives in the Sargasso Sea. Virol J. 2005;2:62.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Monier A, Claverie JM, Ogata H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 2008;9:R106.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Pagnier I, Reteno DG, Saadi H, Boughalmi M, Gaia M, Slimani M, Ngounga T, Bekliz M, Colson P, Raoult D, La Scola B. A decade of improvements in Mimiviridae and Marseilleviridae isolation from amoeba. Intervirology. 2013;56:354–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Fischer MG, Allen MJ, Wilson WH, Suttle CA. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A. 2010;107:19508–13.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM. Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci U S A. 2011;108:17486–91.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Philippe N, Legendre M, Doutre G, Coute Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science. 2013;341:281–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Yutin N, Koonin EV. Pandoraviruses are highly derived phycodnaviruses. Biol Direct. 2013;8:25.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Zauberman N, Mutsafi Y, Halevy DB, Shimoni E, Klein E, Xiao C, Sun S, Minsky A. Distinct DNA exit and packaging portals in the virus Acanthamoeba polyphaga mimivirus. PLoS Biol. 2008;6:e114.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    La Scola B, Desnues C, Pagnier I, Robert C, Barrassi L, Fournous G, Merchat M, Suzan-Monti M, Forterre P, Koonin E, Raoult D. The virophage as a unique parasite of the giant mimivirus. Nature. 2008;455:100–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Yutin N, Raoult D, Koonin EV. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol J. 2013;10:158.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Fischer MG, Suttle CA. A virophage at the origin of large DNA transposons. Science. 2011;332:231–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Yau S, Lauro FM, DeMaere MZ, Brown MV, Thomas T, Raftery MJ, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Gibson JA, Cavicchioli R. Virophage control of Antarctic algal host-virus dynamics. Proc Natl Acad Sci U S A. 2011;108:6163–8.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, Barbe V, Wommack KE, Noordeloos AA, Brussaard CP, Claverie JM. Genome of Phaeocystis globosa virus PgV-16 T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci U S A. 2013;110:10800–5.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ogata H, Claverie JM. Microbiology. How to infect a mimivirus. Science. 2008;321:1305–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Colson P, Gimenez G, Boyer M, Fournous G, Raoult D. The giant Cafeteria roenbergensis virus that infects a widespread marine phagocytic protist is a new member of the fourth domain of Life. PLoS One. 2011;6:e18935.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Legendre M, Arslan D, Abergel C, Claverie JM. Genomics of Megavirus and the elusive fourth domain of Life. Commun Integr Biol. 2012;5:102–6.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nasir A, Kim KM, Caetano-Anolles G. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evol Biol. 2012;12:156.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Wu D, Wu M, Halpern A, Rusch DB, Yooseph S, Frazier M, Venter JC, Eisen JA. Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLoS One. 2011;6:e18011.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Claverie JM, Ogata H. Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol. 2009;7:615. author reply 615.PubMedCrossRefGoogle Scholar
  30. 30.
    Moreira D, Lopez-Garcia P. Comment on “The 1.2-megabase genome sequence of Mimivirus”. Science. 2005;308:1114. author reply 1114.PubMedCrossRefGoogle Scholar
  31. 31.
    Moreira D, Lopez-Garcia P. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 2009;7:306–11.PubMedGoogle Scholar
  32. 32.
    Williams TA, Embley TM, Heinz E. Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS One. 2011;6:e21080.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Moreira D, Brochier-Armanet C. Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol Biol. 2008;8:12.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Monier A, Claverie JM, Ogata H. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses. BMC Genomics. 2007;8:456.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Forterre P. Giant viruses: conflicts in revisiting the virus concept. Intervirology. 2010;53:362–78.PubMedCrossRefGoogle Scholar
  36. 36.
    Ogata H, Claverie JM. Unique genes in giant viruses: regular substitution pattern and anomalously short size. Genome Res. 2007;17:1353–61.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Moreau H, Piganeau G, Desdevises Y, Cooke R, Derelle E, Grimsley N. Marine prasinovirus genomes show low evolutionary divergence and acquisition of protein metabolism genes by horizontal gene transfer. J Virol. 2010;84:12555–63.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84:9733–48.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Goldenfeld N, Pace NR. Retrospective. Carl R. Woese (1928-2012). Science. 2013;339:661.PubMedCrossRefGoogle Scholar
  40. 40.
    Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature. 2013;504:231–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Villarreal LP, DeFilippis VR. A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. J Virol. 2000;74:7079–84.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Takemura M. Poxviruses and the origin of the eukaryotic nucleus. J Mol Evol. 2001;52:419–25.PubMedGoogle Scholar
  43. 43.
    Bell PJ. Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? J Mol Evol. 2001;53:251–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Tolonen N, Doglio L, Schleich S, Krijnse Locker J. Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei. Mol Biol Cell. 2001;12:2031–46.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Bell PJ. Sex and the eukaryotic cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. J Theor Biol. 2006;243:54–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Claverie JM. Viruses take center stage in cellular evolution. Genome Biol. 2006;7:110.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Moreira D, Lopez-Garcia P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol. 1998;47:517–30.PubMedCrossRefGoogle Scholar
  48. 48.
    Cavalier-Smith T. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct. 2010;5:7.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Martin W, Koonin EV. Introns and the origin of nucleus-cytosol compartmentalization. Nature. 2006;440:41–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Raoult D, Forterre P. Redefining viruses: lessons from Mimivirus. Nat Rev Microbiol. 2008;6:315–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Forterre P. The virocell concept and environmental microbiology. ISME J. 2013;7:233–6.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Dolja VV, Krupovic M. Accelerating expansion of the viral universe. Curr Opin Virol. 2013;3:542–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityUjiJapan
  2. 2.Faculty of ScienceTokyo University of ScienceTokyoJapan

Personalised recommendations