Skip to main content

Chronic Pain Stimuli Downregulate Mesolimbic Dopaminergic Transmission: Possible Mechanism of the Suppression of Opioid Reward

  • Chapter
  • First Online:
Neurobiological Studies of Addiction in Chronic Pain States

Abstract

μ-Opioid agonists (μ-agonists), including morphine, are often used to treat the pain associated with cancer moderate-to-severe pain and moderate-to-severe noncancer pain due to other causes. However, μ-agonists also have various side-effects, in addition to potential for abuse or addiction. Recent clinical studies have shown that when μ-agonist analgesics are used appropriately to control pain, abuse and addiction usually do not develop. This chapter highlights recent findings regarding molecular adaptations observed in models of sustained pain, and discusses how such adaptations could reduce the abuse potential of μ-agonists under chronic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Cancer Pain Relief. Geneva: World Health Organization; 1996.

    Google Scholar 

  2. Carr DB, et al. Evidence report on the treatment of pain in cancer patients. J Natl Cancer Inst Monogr. 2004;2004:23–31.

    Article  Google Scholar 

  3. Trescot AM, et al. Opioid guidelines in the management of chronic non-cancer pain. Pain Physician. 2006;9:1–39.

    PubMed  Google Scholar 

  4. Eisenberg E, et al. Efficacy and safety of opioid agonists in the treatment of neuropathic pain of nonmalignant origin: systematic review and meta-analysis of randomized controlled trials. JAMA. 2005;293:3043–52.

    Article  CAS  PubMed  Google Scholar 

  5. Passik SD. Issues in long-term opioid therapy: unmet needs, risks, and solutions. Mayo Clin Proc. 2009;84:593–601.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Alford DP, et al. Acute pain management for patients receiving maintenance methadone or buprenorphine therapy. Ann Intern Med. 2006;144:127–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Narita M, et al. Direct evidence for the involvement of the mesolimbic kappa-opioid system in the morphine-induced rewarding effectunder aninflammatory pain-like state. Neuropsychopharmacology. 2005;30:111–8.

    Article  CAS  PubMed  Google Scholar 

  8. Narita M, et al. Comparative pharmacological profiles of morphine and oxycodone under a neuropathic pain-like state in mice: evidence for less sensitivity to morphine. Neuropsychopharmacology. 2008;33:1097–112.

    Article  CAS  PubMed  Google Scholar 

  9. Ozaki S, et al. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in mu-opioid receptor functions in the ventral tegmental area. J Neurochem. 2002;82:1192–8.

    Article  CAS  PubMed  Google Scholar 

  10. Ozaki S, et al. Role of extracellular signal-regulated kinase in the ventral tegmental area in the suppression of themorphine-induced rewarding effect in mice with sciatic nerve ligation. J Neurochem. 2004;88:1389–97.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki T, et al. Formalin- and carrageenan-induced inflammation attenuates place preferences produced by morphine, methamphetamine and cocaine. Life Sci. 1996;59:1667–74.

    Article  CAS  PubMed  Google Scholar 

  12. Standifer KM, Pasternak GW. G proteins and opioid receptor-mediated signalling. Cell Signal. 1997;9:237–48.

    Article  CAS  PubMed  Google Scholar 

  13. Narita M, et al. The involvement of phosphoinositide 3-kinase (PI3-Kinase) and phospholipase C gamma (PLC gamma) pathway in the morphine-induced supraspinal antinociception in the mouse. Nihon Shinkei Seishin Yakurigaku Zasshi. 2001;21:7–14.

    CAS  PubMed  Google Scholar 

  14. Narita M. Direct involvement of the supraspinal phosphoinositide 3-kinase/phospholipase C gamma 1 pathway in the mu-opioid receptor agonist-induced supraspinal antinociception in the mouse. Nihon Shinkei Seishin Yakurigaku Zasshi. 2003;23:121–8.

    CAS  PubMed  Google Scholar 

  15. Narita M, et al. Increased level of neuronal phosphoinositide 3-kinase gamma by the activation of mu-opioid receptor in the mouse periaqueductal gray matter: further evidence for the implication in morphine-induced antinociception. Neuroscience. 2004;124:515–21.

    Article  CAS  PubMed  Google Scholar 

  16. Lemberg K, et al. Antinociception by spinal and systemic oxycodone: why does the route make a difference? In vitro and in vivo studies in rats. Anesthesiology. 2006;105:801–12.

    Article  PubMed  Google Scholar 

  17. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci. 1992;13:177–84.

    Article  CAS  PubMed  Google Scholar 

  18. Koob GF, Weiss F. Neuropharmacology of cocaine and ethanol dependence. Recent Dev Alcohol. 1992;10:201–33.

    Article  CAS  PubMed  Google Scholar 

  19. van Ree JM, et al. Opioids, reward and addiction: an encounter of biology, psychology, and medicine. Pharmacol Rev. 1999;51:341–96.

    PubMed  Google Scholar 

  20. Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol. 1989;40:191–225.

    Article  CAS  PubMed  Google Scholar 

  21. Wise RA, Bozarth MA. Action of drugs of abuse on brain reward systems: an update with specific attention to opiates. Pharmacol Biochem Behav. 1982;17:239–43.

    Article  CAS  PubMed  Google Scholar 

  22. Matthews RT, German DC. Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience. 1984;11:617–25.

    Article  CAS  PubMed  Google Scholar 

  23. Di Chiara G, Imperato A. Opposite effects of mu and kappa opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther. 1988;244:1067–80.

    PubMed  Google Scholar 

  24. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A. 1988;85:5274–8.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kalivas PW, et al. Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity. J Pharmacol Exp Ther. 1983;227:229–37.

    CAS  PubMed  Google Scholar 

  26. Kalivas PW, et al. Behavioral and neurochemical effects of neurotensin microinjection into the ventral tegmental area of the rat. Neuroscience. 1983;8:495–505.

    Article  CAS  PubMed  Google Scholar 

  27. Narita M, et al. Involvement of delta-opioid receptors in the effects of morphine on locomotor activity and the mesolimbic dopaminergic system in mice. Psychopharmacology (Berl). 1993;111:423–6.

    Article  CAS  Google Scholar 

  28. Phillips AG, LePiane FG. Reward produced by microinjection of (D-Ala2), Met5-enkephalinamide into the ventral tegmental area. Behav Brain Res. 1982;5:225–9.

    Article  CAS  PubMed  Google Scholar 

  29. Olmstead MC, Franklin KB. The development of a conditioned place preference to morphine: effects of microinjections into various CNS sites. Behav Neurosci. 1997;111:1324–34.

    Article  CAS  PubMed  Google Scholar 

  30. Phillips AG, et al. Strategies for studying the neurochemical substrates of drug reinforcement in rodents. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7:585–90.

    Article  CAS  PubMed  Google Scholar 

  31. Shippenberg TS, et al. Examination of the neurochemical substrates mediating the motivational effects of opioids: role of the mesolimbic dopamine system and D-1 vs. D-2 dopamine receptors. J Pharmacol Exp Ther. 1993;265:53–9.

    CAS  PubMed  Google Scholar 

  32. Kanner RM, Foley KM. Patterns of narcotic drug use in a cancer pain clinic. Ann N Y Acad Sci. 1981;362:161–72.

    Article  CAS  PubMed  Google Scholar 

  33. Portenoy RK, Foley KM. Chronic use of opioid analgesics in non-malignant pain: report of 38 cases. Pain. 1986;25:171–86.

    Article  CAS  PubMed  Google Scholar 

  34. Zacny JP, et al. The effects of a cold-water immersion stressor on the reinforcing and subjective effects of fentanyl in healthy volunteers. Drug Alcohol Depend. 1996;42:133–42.

    Article  CAS  PubMed  Google Scholar 

  35. Ozaki S, et al. Suppression of the morphine-induced rewarding effect and G-protein activation in the lower midbrain following nerve injury in the mouse: involvement of G-protein-coupled receptor kinase 2. Neuroscience. 2003;116:89–97.

    Article  CAS  PubMed  Google Scholar 

  36. Niikura K, et al. Direct evidence for the involvement of endogenous beta-endorphin in the suppression of the morphine-induced rewarding effect under a neuropathic pain-like state. Neurosci Lett. 2008;435:257–62.

    Article  CAS  PubMed  Google Scholar 

  37. Martini L, Whistler JL. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol. 2007;17:556–64.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, et al. Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci U S A. 1998;95:7157–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Zangen A, et al. Nociceptive stimulus induces release of endogenous beta-endorphin in the rat brain. Neuroscience. 1998;85:659–62.

    Article  CAS  PubMed  Google Scholar 

  40. Zubieta JK, et al. Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science. 2001;293:311–5.

    Article  CAS  PubMed  Google Scholar 

  41. Belcheva MM, et al. Opioid modulation of extracellular signal-regulated protein kinase activity is Ras-dependent and involves Ghg subunits. J Neurochem. 1998;70:635–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhang Z, et al. Endogenous y-opioid and ORL1 receptors couple to phosphorylation and activation of p38 MAPK in NG108-15 cells and this is regulated by protein kinase A and protein kinase C. J Neurochem. 1999;73:1502–9.

    Article  CAS  PubMed  Google Scholar 

  43. Berhow MT, et al. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transductioncascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci. 1996;16:4707–15.

    CAS  PubMed  Google Scholar 

  44. Haycock JW, et al. ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci U S A. 1992;89:2365–9.

    Google Scholar 

  45. Narita M, et al. Regulations of opioid dependence by opioid receptor types. Pharmacol Ther. 2001;89:1–15.

    Article  CAS  PubMed  Google Scholar 

  46. Maisonneuve IM, et al. U50,488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats. Neurosci Lett. 1994;181:57–60.

    Article  CAS  PubMed  Google Scholar 

  47. Spanagel R, et al. The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem. 1990;55:1734–40.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, et al. Effect of the kappa opioid agonist R-84760 on cocaine-induced increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice. Psychopharmacology (Berl). 2004;173:146–52.

    Google Scholar 

  49. Zhang Y, et al. Effect of the endogenous kappa opioid agonist dynorphin A(1-17) on cocaine-evoked increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice. Psychopharmacology (Berl). 2004;172:422–9.

    Article  CAS  Google Scholar 

  50. Wang XM, et al. Acute intermittent morphine increases preprodynorphin and kappa opioid receptor mRNA levels in the rat brain. Brain Res Mol Brain Res. 1999;66:184–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Narita, M. et al. (2014). Chronic Pain Stimuli Downregulate Mesolimbic Dopaminergic Transmission: Possible Mechanism of the Suppression of Opioid Reward. In: Fairbanks, C., Martin, Ph.D., T. (eds) Neurobiological Studies of Addiction in Chronic Pain States. Contemporary Clinical Neuroscience, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1856-0_4

Download citation

Publish with us

Policies and ethics