Skip to main content

Nanostructures and Nanobacteria

  • Chapter
  • First Online:
Nanomicrobiology

Abstract

Nanobacteria (also spelled nannobacteria) are small ovoid or spherical structures ranging from 50 to 200 nm in size that have been observed by electron microscopy in association with clays and carbonate minerals as well as medically important urinary calculi and arterial plaque. In at least one study, nano-sized structures within a meteorite were presented as potential evidence of extraterrestrial life. Three major hypotheses have been developed to explain nanobacteria: (1) they represent an artifact of specimen preparation for microscopy, (2) they represent independent or previously unrecognized life forms, and (3) they represent nano-sized structures (nanostructures) arising from conventional microorganisms such as bacteria and archaea. In this chapter, we discuss experimental evidence that addresses these three hypotheses, propose studies that investigate the contribution of nanostructures (nanobacteria) to mineral formation, and suggest a possible contribution of nanostructures to chemical evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angert ER, Clements KD, Pace NR (1993) The largest bacterium. Nature (Lond) 362:239–241

    Article  CAS  Google Scholar 

  • Balkwill DL, Ghiorse WC (1985) Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl Environ Microbiol 50:580–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beveridge TJ (1981) Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol 72:229–317

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ (1989) The structure of bacteria. In: Poindexter JS, Leadbetter ER (eds) Bacteria in nature, vol 3. Plenum Publishing Corporation, New York, pp 1–65

    Google Scholar 

  • Beveridge TJ (1999) Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beveridge TJ, Moyles D, Harris B (2007) Electron microscopy. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf GF, Schmidt TM, Snyder LA (eds) Methods for general and molecular microbiology, 3rd edn. ASM Press, Washington, pp 54–81

    Google Scholar 

  • Binnig G, Rohrer H (1984) Scanning tunneling microscopy. Physica 127B:37–45

    Article  Google Scholar 

  • Carini P, Steindler L, Beszteri S, Giovannoni SJ (2013) Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J 7:592–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Çifçioglu N, Kuronen I, Akerman K, Hiltunen E, Laukkanen J, Kajander EO (1997) A new potential threat in antigen and antibody products: nanobacteria. In: Brown F, Burton D, Doherty P, Mekalanos JJ, Norrby E (eds) Vaccines 97. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 99–103

    Google Scholar 

  • Cisar JO, Xu DQ, Thompson J, Swaim W, Hu L, Kopecko DJ (2000) An alternative interpretation of nanobacteria-induced biomineralization. Proc Natl Acad Sci U S A 97:11511–11515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coene W, Janssen G, Op de Beeck M, Van Dyck D (1992) Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69:3743–3746

    Article  CAS  PubMed  Google Scholar 

  • Deatherage BL, Lara JC, Bergsbaken T, Rassoulian Barret SL, Lara S, Cookson BT (2009) Biogenesis of bacterial membrane vesicles. Mol Microbiol 72:1395–1407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dick GJ, Torpey JW, Beveridge TJ, Tebo BM (2008) Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Appl Environ Microbiol 74:1527–1534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 21–33

    Google Scholar 

  • Duda VI, Suzina NE, Polivtseva VN, Boronin AM (2012) Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology. Microbiology 81:379–390

    Article  CAS  Google Scholar 

  • Dunn KA, McLean RJC, Upchurch GR Jr, Folk RL (1997) Enhancement of leaf fossilization potential by bacterial biofilms. Geology 25:1119–1122

    Article  CAS  Google Scholar 

  • Ferris FG, Beveridge TJ (1986) Site specificity of metallic ion binding in Escherichia coli K-12 lipopolysaccharide. Can J Microbiol 32:52–55

    Article  CAS  PubMed  Google Scholar 

  • Ferris FG, Beveridge TJ, Fyfe WS (1986) Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature (Lond) 320:609–611

    Article  CAS  Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1987) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63:225–232

    Article  CAS  Google Scholar 

  • Folk RL (1993) SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J Sed Petrol 63:990–999

    Google Scholar 

  • Folk RL, Lynch FL (1997) The possible role of nannobacteria (dwarf bacteria) in clay-mineral diagenesis and the importance of careful sample preparation in high-magnification SEM study. J Sed Res 67:583–589

    Google Scholar 

  • Folk RL, Lynch FL (2001) Organic matter, putative nannobacteria and the formation of ooids and hardgrounds. Sedimentology 48:215–229

    Article  Google Scholar 

  • Fratesi SE, Lynch FL, Kirkland BL, Brown LR (2004) Effects of SEM preparation techniques on the appearance of bacteria and biofilms in the carter sandstone. J Sed Res 74:858–867

    Article  Google Scholar 

  • Friedmann EI, Weed R (1987) Microbial trace fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236:703–705

    Article  CAS  PubMed  Google Scholar 

  • Gajdusek DC (1977) Unconventional virus and the origin and disappearance of kuru. Science 197:943–960

    Article  CAS  PubMed  Google Scholar 

  • Ghiorse WC, Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol 33:107–172

    Article  CAS  PubMed  Google Scholar 

  • Gillet P, Barrat JA, Heulin T, Achouak W, Lesourd M, Guyot F, Benzerara K (2000) Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. Earth Planet Sci Lett 175:161–167

    Article  CAS  PubMed  Google Scholar 

  • Graham LL, Harris R, Villiger W, Beveridge TJ (1991) Freeze-substitution of gram-negative eubacteria: general cell morphology and envelope profiles. J Bacteriol 173:1623–1633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafsson MGL, Agard DA, Sedat JW (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16

    Article  CAS  PubMed  Google Scholar 

  • Hallbeck L, Pedersen K (1995) Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalk-forming and a non-stalk-forming strain and biofilm studies in situ. Microb Ecol 30:257–268

    Article  CAS  PubMed  Google Scholar 

  • Hayat MA (1981) Fixation for electron microscopy. Academic, New York

    Google Scholar 

  • Hooke R (1665) Micrographia: or, some physiological descriptions of minute bodies made by magnifying glasses. J. Martyn and J. Allestry, London

    Google Scholar 

  • Hunter RC, Beveridge TJ (2005) High-resolution visualization of Pseudomonas aeruginosa PAO1 biofilms by freeze-substitution transmission electron microscopy. J Bacteriol 187:7619–7630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kajander EO, Çifçioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci U S A 95:8274–8279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kajander EO, Çifçioglu N, Aho K, Garcia-Cuerpo E (2003) Characteristics of nanobacteria and their possible role in stone formation. Urol Res 31:47–54

    PubMed  Google Scholar 

  • Kirkland BL, Lynch FL, Rahnis MA, Folk RL, Molineux IJ, McLean RJC (1999) Alternative origins for nannobacteria-like objects in calcite. Geology 27:347–350

    Article  Google Scholar 

  • Knoll M, Ruska E (1932) The electron microscope. Z Phys 78:318–339

    Article  CAS  Google Scholar 

  • Korgaonkar A, Trivedi U, Rumbaugh K, Whiteley M (2012) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 110:1059–1064

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354

    Article  PubMed Central  PubMed  Google Scholar 

  • MacDonald IA, Kuehn MJ (2013) Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol 195:2971–2981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martel J, Wu CY, Young JD (2010) Critical evaluation of gamma-irradiated serum used as feeder in the culture and demonstration of putative nanobacteria and calcifying nanoparticles. PLOS One 5:e10343

    Article  PubMed Central  PubMed  Google Scholar 

  • Martel J, Young D, Peng HH, Wu CY, Young JD (2012) Biomimetic properties of minerals and the search for life in the Martian meteorite ALH84001. Annu Rev Earth Planet Sci 40:167–193

    Article  CAS  Google Scholar 

  • Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425

    Article  CAS  PubMed  Google Scholar 

  • Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846

    Article  CAS  PubMed  Google Scholar 

  • Mashburn-Warren LM, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M (2008) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69:491–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McBroom AJ, Kuehn MJ (2007) Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol 63:545–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keptra KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    Article  CAS  PubMed  Google Scholar 

  • McLean RJC, Beveridge TJ (1990) Metal binding capacity of bacterial surfaces and their ability to form mineralized aggregates. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 185–222

    Google Scholar 

  • McLean RJC, Nickel JC, Noakes VC, Costerton JW (1985) An in vitro study of infectious kidney stone genesis. Infect Immun 49:805–811

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLean RJC, Beauchemin D, Clapham L, Beveridge TJ (1990) Metal binding characteristics of the gamma-glutamyl capsule polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microbiol 56:3671–3677

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLean RJC, Lam JS, Graham LL (2012) Training the biofilm generation—a tribute to JW Costerton. J Bacteriol 194:6711

    Article  Google Scholar 

  • Miller VM, Rodgers G, Charlesworth JA, Kirkland BL, Severson SR, Rasmussen TE, Yagubyan M, Rodgers JC, Cockerill FR, Folk RL, Rzewuska-Lech E, Kumar V, Farell-Baril G, Lieske JC (2004) Evidence of nanobacteria-like structures in calcified human arteries and cardiac valves. Heart Circ Physiol 10:H1115–H1124

    Article  Google Scholar 

  • Morita RY (1982) Starvation-survival of heterotrophs in the marine environment. Adv Microb Ecol 6:171–198

    Article  Google Scholar 

  • Morita RY (1988) Bioavailability of energy and its relationship to growth and starvation survival in nature. Can J Microbiol 34:436–441

    Article  CAS  Google Scholar 

  • Morita RY (1990) The starvation-survival state of microorganisms in nature and its relationship to the bioavailable energy. Experientia 46:813–817

    Article  Google Scholar 

  • National Academy of Sciences (1999) Size limits of very small microorganisms: proceedings of a workshop. National Academic Press, Washington DC

    Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188:5945–5957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sillitoe RH, Folk RL, Saric N (1996) Bacteria as mediators of copper sulfide enrichment during weathering. Science 272:1153–1155

    Article  CAS  PubMed  Google Scholar 

  • Southam G, Firtel M, Blackford BL, Jericho MH, Xu W, Mulhern PJ, Beveridge TJ (1993) Transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1. J Bacteriol 175:1946–1955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staley JT, Fuerst JA (1989) Budding and/or appendaged bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1890–1993

    Google Scholar 

  • Trevors JT, Psenner R (2001) From self-assembly of life to present-day bacteria: a possible role for nanocells. FEMS Microbiol Rev 25:573–582

    Article  CAS  PubMed  Google Scholar 

  • Uwins PJR, Webb RI, Taylor AP (1998) Novel nano-organisms from Australian sandstones. Am Miner 83:1541–1550

    CAS  Google Scholar 

  • van Leeuwenhoek A (1712) A letter from Mr. Anthony Van Leeuwenhoek, F. R. S. containing some further microscopical observations on the animalcula found upon duckweed. Phil Trans 28:160–164

    Article  Google Scholar 

Download references

Acknowledgments

We deeply appreciate the friendship and boundless scientific enthusiasm of Robert L Folk, who stimulated many thought-provoking discussions, and exciting work. We also acknowledge the tremendous contribution of the late F. Leo Lynch to this field and to this chapter. Some of the authors’ work described in this chapter was made possible by funding by the Texas Higher Education Coordinating Board (BLK, RJCM) and the National Science Foundation (EAR-9803031; BLK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. C. McLean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

McLean, R., Kirkland, B. (2014). Nanostructures and Nanobacteria. In: Barton, L., Bazylinski, D., Xu, H. (eds) Nanomicrobiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1667-2_1

Download citation

Publish with us

Policies and ethics