Skip to main content

The Interaction Network of the Hsp90 Molecular Chaperone

  • Chapter
  • First Online:
The Molecular Chaperones Interaction Networks in Protein Folding and Degradation

Part of the book series: Interactomics and Systems Biology ((INTERACTOM,volume 1))

Abstract

Heat shock protein (Hsp 90) is a highly abundant and critical molecular chaperone that plays key roles in cellular quality control systems. The Hsp90 mechanism of function has been the subject of extensive investigation by many groups using traditional biochemical approaches as well as high-throughput methods, however, the Hsp90 functional cycle still remains enigmatic. A complicating factor in understanding Hsp90 function is the presence of many cofactors and co-chaperones that assist in Hsp90 chaperoning activity. The widely used model organism, Saccharomyces cerevisiae (budding yeast), contains two highly conserved members of the Hsp90 family, Hsp82, and Hsc82, and has been used as a model organism for mapping Hsp90 interactors. High-throughput proteomic studies on the yeast Hsp90 provided a wealth of information from a global perspective. More recently, such studies in mammalian cells have led to a better understanding of Hsp90 function. Here, we discuss the Hsp90 functions and highlight the most recent efforts leading to the construction of the Hsp90 interaction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135. doi:10.1016/j.cell.2007.07.036

    Article  CAS  PubMed  Google Scholar 

  2. Echeverria PC, Bernthaler A, Dupuis P, Mayer B, Picard D (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE 6(10):e26044. doi:10.1371/journal.pone.0026044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Borkovich KA, Farrelly FW, Finkelstein DB, Taulien J, Lindquist S (1989) hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol 9(9):3919–3930

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Versteeg S, Mogk A, Schumann W (1999) The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol Gen Genet MGG 261(3):582–588. doi:10.1007/s004380051004

    Article  CAS  Google Scholar 

  5. Langer T, Rosmus S, Fasold H (2003) Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biol Int 27(1):47–52

    Article  CAS  PubMed  Google Scholar 

  6. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75(1):271–294. doi:10.1146/annurev.biochem.75.103004.142738

    Article  CAS  PubMed  Google Scholar 

  7. Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44(2):229–255. doi:10.1017/S0033583510000314

    Article  CAS  PubMed  Google Scholar 

  8. Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120(5):715–727. doi:10.1016/j.cell.2004.12.024

    Article  CAS  PubMed  Google Scholar 

  9. Rohl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38(5):253–262. doi:10.1016/j.tibs.2013.02.003

    Article  PubMed  Google Scholar 

  10. Echeverria PC, Figueras MJ, Vogler M, Kriehuber T, de Miguel N, Deng B, Dalmasso MC, Matthews DE, Matrajt M, Haslbeck M, Buchner J, Angel SO (2010) The Hsp90 co-chaperone p23 of Toxoplasma gondii: Identification, functional analysis and dynamic interactome determination. Mol Biochem Parasitol 172(2):129–140. doi:10.1016/j.molbiopara.2010.04.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Makhnevych T, Houry WA (2012) The role of Hsp90 in protein complex assembly. Biochim Biophys Acta 1823(3):674–682. doi:10.1016/j.bbamcr.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  12. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18(1):64–76. doi:10.1158/1078-0432.CCR-11-1000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Samant RS, Clarke PA, Workman P (2012) The expanding proteome of the molecular chaperone HSP90. Cell Cycle 11(7):1301–1308. doi:10.4161/cc.19722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wandinger SK, Richter K, Buchner J (2008) The Hsp90 chaperone machinery. J Biol Chem 283(27):18473–18477. doi:10.1074/jbc.R800007200

    Article  CAS  PubMed  Google Scholar 

  15. Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications: a comprehensive review. Pharmacol Ther 79(2):129–168. doi:10.1016/S0163-7258(98)00013-8

    Article  CAS  PubMed  Google Scholar 

  16. Johnson JL, Brown C (2009) Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 14(1):83–94. doi:10.1007/s12192-008-0058-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta 1823(3):624–635. doi:10.1016/j.bbamcr.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  18. Smith DF (2004) Tetratricopeptide repeat cochaperones in steroid receptor complexes. Cell Stress Chaperones 9(2):109–121. doi:10.1379/CSC-31.1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chang HC, Lindquist S (1994) Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J Biol Chem 269(40):24983–24988

    CAS  PubMed  Google Scholar 

  20. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273(6):3679–3686. doi:10.1074/jbc.273.6.3679

    Article  CAS  PubMed  Google Scholar 

  21. Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB (1997) Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 272(26):16224–16230

    Article  CAS  PubMed  Google Scholar 

  22. Wandinger SK, Suhre MH, Wegele H, Buchner J (2006) The phosphatase Ppt1 is a dedicated regulator of the molecular chaperone Hsp90. EMBO J 25(2):367–376. doi:10.1038/sj.emboj.7600930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Jimenez B, Ugwu F, Zhao R, Orti L, Makhnevych T, Pineda-Lucena A, Houry WA (2012) Structure of minimal tetratricopeptide repeat domain protein Tah1 reveals mechanism of its interaction with Pih1 and Hsp90. J Biol Chem 287(8):5698–5709. doi:10.1074/jbc.M111.287458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Boulon S, Marmier-Gourrier N, Pradet-Balade B, Wurth L, Verheggen C, Jady BE, Rothe B, Pescia C, Robert MC, Kiss T, Bardoni B, Krol A, Branlant C, Allmang C, Bertrand E, Charpentier B (2008) The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J Cell Biol 180(3):579–595. doi:10.1083/jcb.200708110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wesche S, Arnold M, Jansen RP (2003) The UCS domain protein She4p binds to myosin motor domains and is essential for class I and class V myosin function. Curr Biol 13(9):715–724

    Article  CAS  PubMed  Google Scholar 

  26. Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strahle U (2007) The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during myofibrillogenesis. Dev Biol 308(1):133–143. doi:10.1016/j.ydbio.2007.05.014

    Article  CAS  PubMed  Google Scholar 

  27. Mayr C, Richter K, Lilie H, Buchner J (2000) Cpr6 and Cpr7, two closely related Hsp90-associated immunophilins from Saccharomyces cerevisiae, differ in their functional properties. J Biol Chem 275(44):34140–34146. doi:10.1074/jbc.M005251200

    Article  CAS  PubMed  Google Scholar 

  28. Bhangoo MK, Tzankov S, Fan AC, Dejgaard K, Thomas DY, Young JC (2007) Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. Mol Biol Cell 18(9):3414–3428. doi:10.1091/mbc.E07-01-0088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Lingelbach LB, Kaplan KB (2004) The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly. Mol Cell Biol 24(20):8938–8950. doi:10.1128/MCB.24.20.8938-8950.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lee YT, Jacob J, Michowski W, Nowotny M, Kuznicki J, Chazin WJ (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279(16):16511–16517. doi:10.1074/jbc.M400215200

    Article  CAS  PubMed  Google Scholar 

  31. Tesic M, Marsh JA, Cullinan SB, Gaber RF (2003) Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae. J Biol Chem 278(35):32692–32701. doi:10.1074/jbc.M304315200

    Article  CAS  PubMed  Google Scholar 

  32. Crevel G, Bennett D, Cotterill S (2008) The human TPR protein TTC4 is a putative Hsp90 co-chaperone which interacts with CDC6 and shows alterations in transformed cells. PLoS ONE 3(3):e0001737. doi:10.1371/journal.pone.0001737

    Article  PubMed  Google Scholar 

  33. Brychzy A, Rein T, Winklhofer KF, Hartl FU, Young JC, Obermann WM (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J 22(14):3613–3623. doi:10.1093/emboj/cdg362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Moffatt NS, Bruinsma E, Uhl C, Obermann WM, Toft D (2008) Role of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry (Mosc) 47(31):8203–8213. doi:10.1021/bi800770g

    Article  Google Scholar 

  35. Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, Singh S, Millson SH, Clarke PA, Naaby-Hansen S, Stein R, Cramer R, Mollapour M, Workman P, Piper PW, Pearl LH, Prodromou C (2002) Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10(6):1307–1318

    Article  CAS  PubMed  Google Scholar 

  36. Lotz GP, Lin H, Harst A, Obermann WM (2003) Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem 278(19):17228–17235. doi:10.1074/jbc.M212761200

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Richter K, Reinstein J, Buchner J (2013) Integration of the accelerator Aha1 in the Hsp90 co-chaperone cycle. Nat Struct Mol Biol 20(3):326–331. doi:10.1038/nsmb.2502

    Article  PubMed  Google Scholar 

  38. Meyer P, Prodromou C, Liao C, Hu B, Mark Roe S, Vaughan CK, Vlasic I, Panaretou B, Piper PW, Pearl LH (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 23(3):511–519. doi:10.1038/sj.emboj.7600060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Koulov AV, LaPointe P, Lu B, Razvi A, Coppinger J, Dong MQ, Matteson J, Laister R, Arrowsmith C, Yates JR 3rd, Balch WE (2010) Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 21(6):871–884. doi:10.1091/mbc.E09-12-1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J (2010) Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 37(3):344–354. doi:10.1016/j.molcel.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  41. Armstrong H, Wolmarans A, Mercier R, Mai B, LaPointe P (2012) The co-chaperone Hch1 regulates Hsp90 function differently than its homologue Aha1 and confers sensitivity to yeast to the Hsp90 inhibitor NVP-AUY922. PLoS ONE 7(11):e49322. doi:10.1371/journal.pone.0049322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Echtenkamp FJ, Zelin E, Oxelmark E, Woo JI, Andrews BJ, Garabedian M, Freeman BC (2011) Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Mol Cell 43(2):229–241. doi:10.1016/j.molcel.2011.05.029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440(7087):1013–1017. doi:10.1038/nature04716

    Article  CAS  PubMed  Google Scholar 

  44. Mandal AK, Lee P, Chen JA, Nillegoda N, Heller A, DiStasio S, Oen H, Victor J, Nair DM, Brodsky JL, Caplan AJ (2007) Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. J Cell Biol 176(3):319–328. doi:10.1083/jcb.200604106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C, Robinson CV, Saibil HR, Pearl LH (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23(5):697–707. doi:10.1016/j.molcel.2006.07.016

    Article  CAS  PubMed  Google Scholar 

  46. Sreeramulu S, Jonker HR, Langer T, Richter C, Lancaster CR, Schwalbe H (2009) The human Cdc37.Hsp90 complex studied by heteronuclear NMR spectroscopy. J Biol Chem 284(6):3885–3896. doi:10.1074/jbc.M806715200

    Article  CAS  PubMed  Google Scholar 

  47. Eckl JM, Rutz DA, Haslbeck V, Zierer BK, Reinstein J, Richter K (2013) Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites. J Biol Chem 288(22):16032–16042. doi:10.1074/jbc.M112.439257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16(3):287–293. doi:10.1038/nsmb.1565

    Article  CAS  PubMed  Google Scholar 

  49. Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16(3):281–286. doi:10.1038/nsmb.1557

    Article  CAS  PubMed  Google Scholar 

  50. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11(8):579–592. doi:10.1038/nrm2941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dittmar KD, Demady DR, Stancato LF, Krishna P, Pratt WB (1997) Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery—the role of p23 is to stabilize receptor-hsp90 heterocomplexes formed by hsp90-p60-hsp70. J Biol Chem 272 (34):21213–21220. doi:DOI 10.1074/jbc.272.34.21213

    Article  CAS  PubMed  Google Scholar 

  52. Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D (1998) The assembly of progesterone Receptor-hsp90 complexes using purified proteins. J Biol Chem 273 (49):32973–32979. doi:DOI 10.1074/jbc.273.49.32973

    Article  CAS  PubMed  Google Scholar 

  53. Korber BT, Farber RM, Wolpert DH, Lapedes AS (1993) Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc Natl Acad Sci U S A 90(15):7176–7180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Travers SA, Fares MA (2007) Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses. Mol Biol Evol 24(4):1032–1044. doi:10.1093/molbev/msm022

    Article  CAS  PubMed  Google Scholar 

  55. Fares MA, McNally D (2006) CAPS: coevolution analysis using protein sequences. Bioinformatics 22(22):2821–2822. doi:10.1093/bioinformatics/btl493

    Article  CAS  PubMed  Google Scholar 

  56. Mollapour M, Bourboulia D, Beebe K, Woodford MR, Polier S, Hoang A, Chelluri R, Li Y, Guo A, Lee MJ, Fotooh-Abadi E, Khan S, Prince T, Miyajima N, Yoshida S, Tsutsumi S, Xu W, Panaretou B, Stetler-Stevenson WG, Bratslavsky G, Trepel JB, Prodromou C, Neckers L (2014) Asymmetric Hsp90 N domain SUMOylation recruits Aha1 and ATP-competitive inhibitors. Mol Cell 53(2):317–329. doi:10.1016/j.molcel.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  57. Mollapour M, Neckers L (2012) Post-translational modifications of Hsp90 and their contributions to chaperone regulation. Biochim Biophys Acta 1823(3):648–655. doi:10.1016/j.bbamcr.2011.07.018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Mollapour M, Tsutsumi S, Truman AW, Xu W, Vaughan CK, Beebe K, Konstantinova A, Vourganti S, Panaretou B, Piper PW, Trepel JB, Prodromou C, Pearl LH, Neckers L (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 41(6):672–681. doi:10.1016/j.molcel.2011.02.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Mollapour M, Tsutsumi S, Kim YS, Trepel J, Neckers L (2011) Casein kinase 2 phosphorylation of Hsp90 threonine 22 modulates chaperone function and drug sensitivity. Oncotarget 2(5):407–417

    PubMed Central  PubMed  Google Scholar 

  60. Mollapour M, Tsutsumi S, Donnelly AC, Beebe K, Tokita MJ, Lee MJ, Lee S, Morra G, Bourboulia D, Scroggins BT, Colombo G, Blagg BS, Panaretou B, Stetler-Stevenson WG, Trepel JB, Piper PW, Prodromou C, Pearl LH, Neckers L (2010) Swe1Wee1-dependent tyrosine phosphorylation of Hsp90 regulates distinct facets of chaperone function. Mol Cell 37(3):333–343. doi:10.1016/j.molcel.2010.01.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25(1):151–159. doi:10.1016/j.molcel.2006.12.008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Martinez-Ruiz A, Villanueva L, Gonzalez deOC, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A 102(24):8525–8530. doi:10.1073/pnas.0407294102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Retzlaff M, Stahl M, Eberl HC, Lagleder S, Beck J, Kessler H, Buchner J (2009) Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep 10(10):1147–1153. doi:10.1038/embor.2009.153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Genest O, Reidy M, Street TO, Hoskins JR, Camberg JL, Agard DA, Masison DC, Wickner S (2013) Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast. Mol Cell 49(3):464–473. doi:10.1016/j.molcel.2012.11.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Louvion JF, Abbas-Terki T, Picard D (1998) Hsp90 is required for pheromone signaling in yeast. Mol Biol Cell 9(11):3071–3083. doi:10.1091/mbc.9.11.3071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Abbas-Terki T, Donze O, Picard D (2000) The molecular chaperone Cdc37 is required for Ste11 function and pheromone-induced cell cycle arrest. FEBS Lett 467(1):111–116

    Article  CAS  PubMed  Google Scholar 

  67. Lee P, Shabbir A, Cardozo C, Caplan AJ (2004) Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol Biol Cell 15(4):1785–1792. doi:10.1091/mbc.E03-07-0480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Donze O, Picard D (1999) Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected]. Mol Cell Biol 19(12):8422–8432

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Aligue R, Akhavan-Niak H, Russell P (1994) A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J 13(24):6099–6106

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Booher RN, Deshaies RJ, Kirschner MW (1993) Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J 12(9):3417–3426

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Goes FS, Martin J (2001) Hsp90 chaperone complexes are required for the activity and stability of yeast protein kinases Mik1, Wee1 and Swe1. Eur J Biochem 268(8):2281–2289. doi:10.1046/j.1432-1327.2001.02105.x

    Article  CAS  PubMed  Google Scholar 

  72. Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW (2005) A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell 4(5):849–860. doi:10.1128/EC.4.5.849-860.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Creusot F, Creusot F, Verdière J, Verdière J, Gaisne M, Gaisne M (1988) CYP1 (HAP1) regulator of oxygen-dependent gene expression in yeast: I. Overall organization of the protein sequence displays several novel structural domains. J Mol Biol 204(2):263–276

    Article  CAS  PubMed  Google Scholar 

  74. Hon T, Lee HC, Hach A, Johnson JL, Craig EA, Erdjument-Bromage H, Tempst P, Zhang L (2001) The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Mol Cell Biol 21(23):7923–7932. doi:10.1128/MCB.21.23.7923-7932.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Hon T, Lee HC, Hu Z, Iyer VR, Zhang L (2005) The heme activator protein Hap1 represses transcription by a heme-independent mechanism in Saccharomyces cerevisiae. Genetics 169(3):1343–1352. doi:10.1534/genetics.104.037143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Bali M, Zhang B, Morano KA, Michels CA (2003) The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p. J Biol Chem 278(48):47441–47448. doi:10.1074/jbc.M309536200

    Article  CAS  PubMed  Google Scholar 

  77. Nathan DF, Vos MH, Lindquist S (1997) In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94(24):12949–12956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Doyle SM, Genest O, Wickner S (2013) Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 14(10):617–629. doi:10.1038/nrm3660

    Article  CAS  PubMed  Google Scholar 

  79. Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, Yip CM, Houry WA (2008) Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J Cell Biol 180(3):563–578. doi:10.1083/jcb.200709061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, Skehel JM, de Lange T, Boulton SJ (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39(6):839–850. doi:10.1016/j.molcel.2010.08.037

    Article  CAS  PubMed  Google Scholar 

  81. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132(6):945–957. doi:10.1016/j.cell.2008.01.019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Boulon S, Pradet-Balade B, Verheggen C, Molle D, Boireau S, Georgieva M, Azzag K, Robert MC, Ahmad Y, Neel H, Lamond AI, Bertrand E (2010) HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol Cell 39(6):912–924. doi:10.1016/j.molcel.2010.08.023

    Article  CAS  PubMed  Google Scholar 

  83. Gomez-Navarro N, Peiro-Chova L, Rodriguez-Navarro S, Polaina J, Estruch F (2013) Rtp1p is a karyopherin-like protein required for RNA polymerase II biogenesis. Mol Cell Biol 33(9):1756–1767. doi:10.1128/MCB.01449-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Mita P, Savas JN, Ha S, Djouder N, Yates JR 3rd, Logan SK (2013) Analysis of URI nuclear interaction with RPB5 and components of the R2TP/prefoldin-like complex. PLoS ONE 8(5):e63879. doi:10.1371/journal.pone.0063879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A, Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D816–D823. doi:10.1093/nar/gks1158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Gene Ontology C, Blake JA, Dolan M, Drabkin H, Hill DP, Li N, Sitnikov D, Bridges S, Burgess S, Buza T, McCarthy F, Peddinti D, Pillai L, Carbon S, Dietze H, Ireland A, Lewis SE, Mungall CJ, Gaudet P, Chrisholm RL, Fey P, Kibbe WA, Basu S, Siegele DA, McIntosh BK, Renfro DP, Zweifel AE, Hu JC, Brown NH, Tweedie S, Alam-Faruque Y, Apweiler R, Auchinchloss A, Axelsen K, Bely B, Blatter M, Bonilla C, Bouguerleret L, Boutet E, Breuza L, Bridge A, Chan WM, Chavali G, Coudert E, Dimmer E, Estreicher A, Famiglietti L, Feuermann M, Gos A, Gruaz-Gumowski N, Hieta R, Hinz C, Hulo C, Huntley R, James J, Jungo F, Keller G, Laiho K, Legge D, Lemercier P, Lieberherr D, Magrane M, Martin MJ, Masson P, Mutowo-Muellenet P, O’Donovan C, Pedruzzi I, Pichler K, Poggioli D, Porras Millan P, Poux S, Rivoire C, Roechert B, Sawford T, Schneider M, Stutz A, Sundaram S, Tognolli M, Xenarios I, Foulgar R, Lomax J, Roncaglia P, Khodiyar VK, Lovering RC, Talmud PJ, Chibucos M, Giglio MG, Chang H, Hunter S, McAnulla C, Mitchell A, Sangrador A, Stephan R, Harris MA, Oliver SG, Rutherford K, Wood V, Bahler J, Lock A, Kersey PJ, McDowall DM, Staines DM, Dwinell M, Shimoyama M, Laulederkind S, Hayman T, Wang S, Petri V, Lowry T, D’Eustachio P, Matthews L, Balakrishnan R, Binkley G, Cherry JM, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hitz BC, Hong EL, Karra K, Miyasato SR, Nash RS, Park J, Skrzypek MS, Weng S, Wong ED, Berardini TZ, Huala E, Mi H, Thomas PD, Chan J, Kishore R, Sternberg P, Van Auken K, Howe D, Westerfield M (2013) Gene ontology annotations and resources. Nucleic Acids Res 41(Database issue):D530–D535. doi:10.1093/nar/gks1050

    Article  Google Scholar 

  87. Wu Z, Moghaddas Gholami A, Kuster B (2012) Systematic identification of the HSP90 candidate regulated proteome. Mol Cell Proteomics 11(6):M111 016675. doi:10.1074/mcp.M111.016675

    Google Scholar 

  88. Sharma K, Vabulas RM, Macek B, Pinkert S, Cox J, Mann M, Hartl FU (2012) Quantitative proteomics reveals that Hsp90 inhibition preferentially targets kinases and the DNA damage response. Mol Cell Proteomics 11(3):M111 014654. doi:10.1074/mcp.M111.014654

    Google Scholar 

  89. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150(5):987–1001. doi:10.1016/j.cell.2012.06.047

    Google Scholar 

  90. Folgueira C, Requena JM (2007) A postgenomic view of the heat shock proteins in kinetoplastids. FEMS Microbiol Rev 31(4):359–377. doi:10.1111/j.1574-6976.2007.00069.x

    Article  CAS  PubMed  Google Scholar 

  91. Diezmann S, Michaut M, Shapiro RS, Bader GD, Cowen LE (2012) Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry. PLoS Genet 8(3):e1002562. doi:10.1371/journal.pgen.1002562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Pavithra SR, Kumar R, Tatu U (2007) Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput Biol 3(9):1701–1715. doi:10.1371/journal.pcbi.0030168

    Article  CAS  PubMed  Google Scholar 

  93. Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127(2):329–340. doi:10.1016/j.cell.2006.09.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a Canadian Institutes of Health Research grant (MOP-93778) to WAH and a Natural Sciences and Engineering Research Council of Canada (RGPIN 283337-11) grant to ERMT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid A. Houry PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rizzolo, K., Wong, P., Tillier, E., Houry, W. (2014). The Interaction Network of the Hsp90 Molecular Chaperone. In: Houry, W. (eds) The Molecular Chaperones Interaction Networks in Protein Folding and Degradation. Interactomics and Systems Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1130-1_5

Download citation

Publish with us

Policies and ethics