Skip to main content

Structural and Biochemical Properties of Hsp40/Hsp70 Chaperone System

  • Chapter
  • First Online:
HSF1 and Molecular Chaperones in Biology and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1243))

Abstract

Hsp70s are ubiquitous molecular chaperones that act in a myriad of cellular functions, affecting virtually all aspects in the life of proteins from synthesis to degradation. Hsp70 proteins act in the cell in cooperation with a large set of dedicated co-chaperones consisting of J-domain proteins and nucleotide exchange factors that regulate the Hsp70 chaperone cycle. Recent studies have made significant progress towards obtaining a better understanding of the mechanisms through which Hsp70s and their co-chaperones operate, providing insights into structural, kinetic, and functional features of the various members of this network. In this chapter we describe the emerging working principles of the Hsp70 machine and its co-chaperones, and highlight how mechanistic aspects of this network are tied to distinct protein folding functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams JL, Verghese J, Gibney PA, Morano KA (2014) Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast. J Biol Chem 289:13155–13167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Acebron SP, Martin I, del Castillo U, Moro F, Muga A (2009) DnaK-mediated association of ClpB to protein aggregates. A bichaperone network at the aggregate surface. FEBS Lett 583:2991–2996

    Article  PubMed  CAS  Google Scholar 

  • Alderson TR, Kim JH, Cai K, Frederick RO, Tonelli M, Markley JL (2014) The specialized Hsp70 (HscA) interdomain linker binds to its nucleotide-binding domain and stimulates ATP hydrolysis in both cis and trans configurations. Biochemistry 53:7148–7159

    Article  PubMed  CAS  Google Scholar 

  • Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353:aac4354

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Jayaraj GG, Peter JJ, Kumar V, Mapa K (2016) Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle. FEBS J 283:2853–2868

    Article  PubMed  CAS  Google Scholar 

  • Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106:8471–8476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bocking T, Aguet F, Harrison SC, Kirchhausen T (2011) Single-molecule analysis of a molecular disassemblase reveals the mechanism of Hsc70-driven clathrin uncoating. Nat Struct Mol Biol 18:295–301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bracher A, Verghese J (2015) The nucleotide exchange factors of Hsp70 molecular chaperones. Front Mol Biosci 2:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    Article  PubMed  CAS  Google Scholar 

  • Carroni M, Kummer E, Oguchi Y, Wendler P, Clare DK, Sinning I, Kopp J, Mogk A, Bukau B, Saibil HR (2014) Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. Elife (Cambridge) 3:e02481

    Google Scholar 

  • Chakraborty A, Mukherjee S, Chattopadhyay R, Roy S, Chakrabarti S (2014) Conformational adaptation in the E. coli sigma 32 protein in response to heat shock. J Phys Chem B 118:4793–4802

    Article  PubMed  CAS  Google Scholar 

  • Chang YW, Sun YJ, Wang C, Hsiao CD (2008) Crystal structures of the 70-kDa heat shock proteins in domain disjoining conformation. J Biol Chem 283:15502–15511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clerico EM, Tilitsky JM, Meng W, Gierasch LM (2015) How Hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol 427:1575–1588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clerico EM, Meng W, Pozhidaeva A, Bhasne K, Petridis C, Gierasch LM (2019) Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 476:1653–1677

    Article  PubMed  CAS  Google Scholar 

  • Craig EA (2018) Hsp70 at the membrane: driving protein translocation. BMC Biol 16:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cupp-Vickery JR, Peterson JC, Ta DT, Vickery LE (2004) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J Mol Biol 342:1265–1278

    Article  PubMed  CAS  Google Scholar 

  • De Los Rios P, Barducci A (2014) Hsp70 chaperones are non-equilibrium machines that achieve ultra-affinity by energy consumption. Elife 3:e02218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doring K, Ahmed N, Riemer T, Suresh HG, Vainshtein Y, Habich M, Riemer J, Mayer MP, O’Brien EP, Kramer G, Bukau B (2017) Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell 170:298–311 e220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J (2004) Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. J Biol Chem 279:29167–29174

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Fernandez MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM (2017) Hsp70 – a master regulator in protein degradation. FEBS Lett 591:2648–2660

    Article  PubMed  CAS  Google Scholar 

  • Finka A, Sood V, Quadroni M, Rios Pde L, Goloubinoff P (2015) Quantitative proteomics of heat-treated human cells show an across-the-board mild depletion of housekeeping proteins to massively accumulate few HSPs. Cell Stress Chaperones 20:605–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346:623–628

    Article  PubMed  CAS  Google Scholar 

  • Fotin A, Cheng Y, Sliz P, Grigorieff N, Harrison SC, Kirchhausen T, Walz T (2004) Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432:573–579

    Article  PubMed  CAS  Google Scholar 

  • Fourie AM, Sambrook JF, Gething MJ (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J Biol Chem 269:30470–30478

    Article  PubMed  CAS  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647

    Article  PubMed  CAS  Google Scholar 

  • Garcia VM, Nillegoda NB, Bukau B, Morano KA (2017) Substrate binding by the yeast Hsp110 nucleotide exchange factor and molecular chaperone Sse1 is not obligate for its biological activities. Mol Biol Cell 28:2066–2075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff P, De Los Rios P (2007) The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem Sci 32:372–380

    Article  PubMed  CAS  Google Scholar 

  • Gowda NKC, Kaimal JM, Kityk R, Daniel C, Liebau J, Ohman M, Mayer MP, Andreasson C (2018) Nucleotide exchange factors Fes1 and HspBP1 mimic substrate to release misfolded proteins from Hsp70. Nat Struct Mol Biol 25:83–89

    Article  PubMed  CAS  Google Scholar 

  • Gragerov A, Gottesman ME (1994) Different peptide binding specificities of hsp70 family members. J Mol Biol 241:133–135

    Article  PubMed  CAS  Google Scholar 

  • Hageman J, Rujano MA, van Waarde MA, Kakkar V, Dirks RP, Govorukhina N, Oosterveld-Hut HM, Lubsen NH, Kampinga HH (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Mol Cell 37:355–369

    Article  PubMed  CAS  Google Scholar 

  • Harrison CJ, Hayer-Hartl M, Di Liberto M, Hartl F, Kuriyan J (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435

    Article  PubMed  CAS  Google Scholar 

  • Heuck A, Schitter-Sollner S, Suskiewicz MJ, Kurzbauer R, Kley J, Schleiffer A, Rombaut P, Herzog F, Clausen T (2016) Structural basis for the disaggregase activity and regulation of Hsp104. Elife 5:pii: e21516

    Article  Google Scholar 

  • Hoff KG, Ta DT, Tapley TL, Silberg JJ, Vickery LE (2002) Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU. J Biol Chem 277:27353–27359

    Article  PubMed  CAS  Google Scholar 

  • Hohfeld J, Minami Y, Hartl FU (1995) Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 83:589–598

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Prasad K, Lafer EM, Sousa R (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20:513–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kakkar V, Mansson C, de Mattos EP, Bergink S, van der Zwaag M, van Waarde M, Kloosterhuis NJ, Melki R, van Cruchten RTP, Al-Karadaghi S, Arosio P, Dobson CM, Knowles TPJ, Bates GP, van Deursen JM, Linse S, van de Sluis B, Emanuelsson C, Kampinga HH (2016) The S/T-rich motif in the DNAJB6 chaperone delays polyglutamine aggregation and the onset of disease in a mouse model. Mol Cell 62:272–283

    Article  PubMed  CAS  Google Scholar 

  • Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kellner R, Hofmann H, Barducci A, Wunderlich B, Nettels D, Schuler B (2014) Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proc Natl Acad Sci U S A 111:13355–13360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kityk R, Kopp J, Sinning I, Mayer MP (2012) Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell 48:863–874

    Article  PubMed  CAS  Google Scholar 

  • Kityk R, Vogel M, Schlecht R, Bukau B, Mayer MP (2015) Pathways of allosteric regulation in Hsp70 chaperones. Nat Commun 6:8308

    Article  PubMed  CAS  Google Scholar 

  • Kityk R, Kopp J, Mayer MP (2018) Molecular mechanism of J-domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol Cell 69:227–237 e224

    Article  PubMed  CAS  Google Scholar 

  • Kluck CJ, Patzelt H, Genevaux P, Brehmer D, Rist W, Schneider-Mergener J, Bukau B, Mayer MP (2002) Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J Biol Chem 277:41060–41069

    Article  PubMed  CAS  Google Scholar 

  • Kramer G, Boehringer D, Ban N, Bukau B (2009) The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16:589–597

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Zhang D, Hughes C, Okuno Y, Sekhar A, Cavagnero S (2015) Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone. Proc Natl Acad Sci U S A 112:E4206–E4215

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K, Sharma R, Shrestha OK, Bingman CA, Craig EA (2016) Dual interaction of the Hsp70 J-protein cochaperone Zuotin with the 40S and 60S ribosomal subunits. Nat Struct Mol Biol 23:1003–1010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Sha B (2003) Preliminary X-ray crystallographic studies of yeast Hsp40 Ydj1 complexed with its peptide substrate. Acta Crystallogr D Biol Crystallogr 59:1317–1319

    Article  PubMed  Google Scholar 

  • Li J, Qian X, Hu J, Sha B (2009) Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading. J Biol Chem 284:23852–23859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Hartl FU, Bracher A (2013) Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle. Nat Struct Mol Biol 20:929–935

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Linke K, Wolfram T, Bussemer J, Jakob U (2003) The roles of the two zinc binding sites in DnaJ. J Biol Chem 278:44457–44466

    Article  PubMed  CAS  Google Scholar 

  • Lipinska N, Zietkiewicz S, Sobczak A, Jurczyk A, Potocki W, Morawiec E, Wawrzycka A, Gumowski K, Slusarz M, Rodziewicz-Motowidlo S, Chrusciel E, Liberek K (2013) Disruption of ionic interactions between the nucleotide binding domain 1 (NBD1) and middle (M) domain in Hsp100 disaggregase unleashes toxic hyperactivity and partial independence from Hsp70. J Biol Chem 288:2857–2869

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Hendrickson WA (2007) Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Cell 131:106–120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luders J, Demand J, Papp O, Hohfeld J (2000) Distinct isoforms of the cofactor BAG-1 differentially affect Hsc70 chaperone function. J Biol Chem 275:14817–14823

    Article  PubMed  CAS  Google Scholar 

  • Marcinowski M, Holler M, Feige MJ, Baerend D, Lamb DC, Buchner J (2011) Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Mol Biol 18:150–158

    Article  PubMed  CAS  Google Scholar 

  • Marcinowski M, Rosam M, Seitz C, Elferich J, Behnke J, Bello C, Feige MJ, Becker CF, Antes I, Buchner J (2013) Conformational selection in substrate recognition by Hsp70 chaperones. J Mol Biol 425:466–474

    Article  PubMed  CAS  Google Scholar 

  • Mashaghi A, Bezrukavnikov S, Minde DP, Wentink AS, Kityk R, Zachmann-Brand B, Mayer MP, Kramer G, Bukau B, Tans SJ (2016) Alternative modes of client binding enable functional plasticity of Hsp70. Nature 539:448–451

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38:507–514

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayer MP, Kityk R (2015) Insights into the molecular mechanism of allostery in Hsp70s. Front Mol Biosci 2:58

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonough H, Patterson C (2003) CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8:303–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer AE, Hung NJ, Yang P, Johnson AW, Craig EA (2007) The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 104:1558–1563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogk A, Kummer E, Bukau B (2015) Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mogk A, Bukau B, Kampinga HH (2018) Cellular handling of protein aggregates by disaggregation machines. Mol Cell 69:214–226

    Article  PubMed  CAS  Google Scholar 

  • Mok SA, Condello C, Freilich R, Gillies A, Arhar T, Oroz J, Kadavath H, Julien O, Assimon VA, Rauch JN, Dunyak BM, Lee J, Tsai FTF, Wilson MR, Zweckstetter M, Dickey CA, Gestwicki JE (2018) Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat Struct Mol Biol 25:384–393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morshauser RC, Wang H, Flynn GC, Zuiderweg ER (1995) The peptide-binding domain of the chaperone protein Hsc70 has an unusual secondary structure topology. Biochemistry 34:6261–6266

    Article  PubMed  CAS  Google Scholar 

  • Morshauser RC, Hu W, Wang H, Pang Y, Flynn GC, Zuiderweg ER (1999) High-resolution solution structure of the 18 kDa substrate-binding domain of the mammalian chaperone protein Hsc70. J Mol Biol 289:1387–1403

    Article  PubMed  CAS  Google Scholar 

  • Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B (2015) Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 524:247–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nillegoda NB, Stank A, Malinverni D, Alberts N, Szlachcic A, Barducci A, De Los Rios P, Wade RC, Bukau B (2017) Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. Elife 6:pii: e24560

    Article  Google Scholar 

  • Nillegoda NB, Wentink AS, Bukau B (2018) Protein disaggregation in multicellular organisms. Trends Biochem Sci 43:285–300

    Article  PubMed  CAS  Google Scholar 

  • Oguchi Y, Kummer E, Seyffer F, Berynskyy M, Anstett B, Zahn R, Wade RC, Mogk A, Bukau B (2012) A tightly regulated molecular toggle controls AAA+ disaggregase. Nat Struct Mol Biol 19:1338–1346

    Article  PubMed  CAS  Google Scholar 

  • Palleros DR, Shi L, Reid KL, Fink AL (1994) hsp70-protein complexes. Complex stability and conformation of bound substrate protein. J Biol Chem 269:13107–13114

    Article  PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  PubMed  CAS  Google Scholar 

  • Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wuthrich K (1996) NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol 260:236–250

    Article  PubMed  CAS  Google Scholar 

  • Pellecchia M, Montgomery DL, Stevens SY, Vander Kooi CW, Feng HP, Gierasch LM, Zuiderweg ER (2000) Structural insights into substrate binding by the molecular chaperone DnaK. Nat Struct Biol 7:298–303

    Article  PubMed  CAS  Google Scholar 

  • Polier S, Dragovic Z, Hartl FU, Bracher A (2008) Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 133:1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Preissler S, Deuerling E (2012) Ribosome-associated chaperones as key players in proteostasis. Trends Biochem Sci 37:274–283

    Article  PubMed  CAS  Google Scholar 

  • Qu B, Jia Y, Liu Y, Wang H, Ren G (2015) The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: a literature review. Cell Stress Chaperones 20:885–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rapoport I, Boll W, Yu A, Bocking T, Kirchhausen T (2008) A motif in the clathrin heavy chain required for the Hsc70/auxilin uncoating reaction. Mol Biol Cell 19:405–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez F, Arsene-Ploetze F, Rist W, Rudiger S, Schneider-Mergener J, Mayer MP, Bukau B (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32:347–358

    Article  PubMed  CAS  Google Scholar 

  • Roodveldt C, Bertoncini CW, Andersson A, van der Goot AT, Hsu ST, Fernandez-Montesinos R, de Jong J, van Ham TJ, Nollen EA, Pozo D, Christodoulou J, Dobson CM (2009) Chaperone proteostasis in Parkinson’s disease: stabilization of the Hsp70/alpha-synuclein complex by Hip. EMBO J 28:3758–3770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosam M, Krader D, Nickels C, Hochmair J, Back KC, Agam G, Barth A, Zeymer C, Hendrix J, Schneider M, Antes I, Reinstein J, Lamb DC, Buchner J (2018) Bap (Sil1) regulates the molecular chaperone BiP by coupling release of nucleotide and substrate. Nat Struct Mol Biol 25:90–100

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE (2013) Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science 339:1080–1083

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig R, Sekhar A, Nagesh J, Kay LE (2017) Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. Elife 6:pii: e28030

    Article  Google Scholar 

  • Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20:665–680

    Article  PubMed  CAS  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101:199–210

    Article  PubMed  CAS  Google Scholar 

  • Schlecht R, Erbse AH, Bukau B, Mayer MP (2011) Mechanics of Hsp70 chaperones enables differential interaction with client proteins. Nat Struct Mol Biol 18:345–351

    Article  PubMed  CAS  Google Scholar 

  • Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R (2008) Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 31:232–243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sekhar A, Rosenzweig R, Bouvignies G, Kay LE (2015) Mapping the conformation of a client protein through the Hsp70 functional cycle. Proc Natl Acad Sci U S A 112:10395–10400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sekhar A, Rosenzweig R, Bouvignies G, Kay LE (2016) Hsp70 biases the folding pathways of client proteins. Proc Natl Acad Sci U S A 113:E2794–E2801

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE (2018) Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. Elife 7:pii: e32764

    Article  Google Scholar 

  • Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A (2005) Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 17:367–379

    PubMed  CAS  Google Scholar 

  • Sondermann H, Scheufler C, Schneider C, Hohfeld J, Hartl FU, Moarefi I (2001) Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science 291:1553–1557

    Article  PubMed  CAS  Google Scholar 

  • Stevens SY, Cai S, Pellecchia M, Zuiderweg ER (2003) The solution structure of the bacterial HSP70 chaperone protein domain DnaK(393–507) in complex with the peptide NRLLLTG. Protein Sci 12:2588–2596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szabo A, Korszun R, Hartl FU, Flanagan J (1996) A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J 15:408–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taipale M, Tucker G, Peng J, Krykbaeva I, Lin ZY, Larsen B, Choi H, Berger B, Gingras AC, Lindquist S (2014) A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways. Cell 158:434–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takayama S, Xie Z, Reed JC (1999) An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786

    Article  PubMed  CAS  Google Scholar 

  • Tapley TL, Cupp-Vickery JR, Vickery LE (2005) Sequence-dependent peptide binding orientation by the molecular chaperone DnaK. Biochemistry 44:12307–12315

    Article  PubMed  CAS  Google Scholar 

  • Tiwari S, Kumar V, Jayaraj GG, Maiti S, Mapa K (2013) Unique structural modulation of a non-native substrate by cochaperone DnaJ. Biochemistry 52:1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  PubMed  CAS  Google Scholar 

  • Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354

    Article  PubMed  CAS  Google Scholar 

  • Vogel M, Bukau B, Mayer MP (2006) Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell 21:359–367

    Article  PubMed  CAS  Google Scholar 

  • Walther DM, Kasturi P, Zheng M, Pinkert S, Vecchi G, Ciryam P, Morimoto RI, Dobson CM, Vendruscolo M, Mann M, Hartl FU (2015) Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161:919–932

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willmund F, del Alamo M, Pechmann S, Chen T, Albanese V, Dammer EB, Peng J, Frydman J (2013) The cotranslational function of ribosome-associated Hsp70 in eukaryotic protein homeostasis. Cell 152:196–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winkler J, Tyedmers J, Bukau B, Mogk A (2012) Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J Cell Biol 198:387–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CC, Naveen V, Chien CH, Chang YW, Hsiao CD (2012) Crystal structure of DnaK protein complexed with nucleotide exchange factor GrpE in DnaK chaperone system: insight into intermolecular communication. J Biol Chem 287:21461–21470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan M, Li J, Sha B (2011) Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor. Biochem J 438:447–455

    Article  PubMed  CAS  Google Scholar 

  • Yu HY, Ziegelhoffer T, Osipiuk J, Ciesielski SJ, Baranowski M, Zhou M, Joachimiak A, Craig EA (2015) Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1. J Mol Biol 427:1632–1643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahn M, Berthold N, Kieslich B, Knappe D, Hoffmann R, Strater N (2013) Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK. J Mol Biol 425:2463–2479

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Sinning I, Rospert S (2017) Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC. Nat Struct Mol Biol 24:611–619

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuravleva A, Gierasch LM (2011) Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc Natl Acad Sci U S A 108:6987–6992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

R.R. is supported by the European Research Council starting grant (ERC-2018-STG 802001), the Azrieli Foundation, and a research grant from the Blythe Brenden-Mann New Scientist Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Rosenzweig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faust, O., Rosenzweig, R. (2020). Structural and Biochemical Properties of Hsp40/Hsp70 Chaperone System. In: Mendillo, M.L., Pincus, D., Scherz-Shouval, R. (eds) HSF1 and Molecular Chaperones in Biology and Cancer. Advances in Experimental Medicine and Biology, vol 1243. Springer, Cham. https://doi.org/10.1007/978-3-030-40204-4_1

Download citation

Publish with us

Policies and ethics