Skip to main content

Human Amniotic Epithelial Cells Transplantation for Contusive Spinal Cord Injury Repair

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Adult tissues were discovered to possess resident stem cell populations and were termed as mesenchymal stem cells (MSCs). These stem cells are considered to be the best alternatives to overcome certain limitations associated with embryonic stem cells. Epithelial cells of amnion were reported to exhibit characteristic features of stem cells and neural cells. This led to speculation of using them for treating various pathological conditions including spinal cord injury (SCI). Studies conducted elsewhere and our laboratory found beneficial aspects of amniotic epithelial cell (AEC) transplantation for certain neurological conditions. Studies on the usefulness of these cells in SCI appear to be limited. In our lab, we have observed beneficial effects of human amniotic epithelial cells (hAECs) when transplanted in contusive SCI model in rats. This study was found to be unique as there was no other study in which these cells were tested for contusive SCI repair. In our experience, these cells may not possess the two important criteria to be qualified for stem cells viz. self-renewal and multilineage differentiation capacity. Notwithstanding to be qualified for the stem cell tag, amniotic epithelial cells may have the potentials for contusive SCI repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AEC:

Amniotic epithelial cells

CNS:

Central nervous system

EGF:

Epidermal growth factor

FGF-2:

Fibroblast growth factor

hAEC:

Human amniotic epithelial cells

MSC:

Mesenchymal stem cells

SCI:

Spinal cord injury/spinal cord injured

References

  1. Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, Banik NL. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res. 2013;38:895–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Young W, Constantini S. The effects of methylprednisolone and ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg. 1994;80:97–111.

    Article  PubMed  Google Scholar 

  3. Tebet MA, Filho TEP, Machado IR, Carvalho MOP, Hanania FR, Dac K. Effect of methylprednisolone in medullar injury in rats: a functional and histological analysis. Acta Ortop Bras. 2003;11:80–7.

    Article  Google Scholar 

  4. Arias MJ. Effect of naloxone on functional recovery after experimental spinal cord injury in the rat. Surg Neurol. 1985;23:440–2.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Budel S, Baughman K, Gould G, Song KH, Strittmatter SM. Ibuprofen enhances recovery from spinal cord injury by limiting tissue loss and stimulating axonal growth. J Neurotrauma. 2009;26:81–95.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Dietrich WD, Levi AD, Wang M, Green BA. Hypothermic treatment for acute spinal cord injury. Neurotherapeutics. 2011;8:229–39.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Asamoto S, Sugiyama H, Doi H, Iida M, Nagao T, Matsumoto K. Hyperbaric oxygen (HBO) therapy for acute traumatic cervical spinal cord injury. Spinal Cord. 2000;38:538–40.

    Article  CAS  PubMed  Google Scholar 

  8. Goldsmith HS, Duckett S, Chen WF. Spinal cord vascularisation by intact omentum. Am J Surg. 1975;129:262–5.

    Article  CAS  PubMed  Google Scholar 

  9. Vrbova G, Clowry G, Nogradi A, Sieradzan K. Transplantation of neural tissue into the spinal cord. Austin: R.G. Landes Company; 1994. p. 51–125.

    Google Scholar 

  10. Wang M, Zhai P, Chen X, Schreyer DJ, Sun X, Cui F. Bioengineered scaffolds for spinal cord repair. Tissue Eng Part B Rev. 2011;17:177–94.

    Article  PubMed  Google Scholar 

  11. Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg. 1977;47:577–81.

    Article  CAS  PubMed  Google Scholar 

  12. Benes Jr V, Rokyta R. Experimental spinal cord injury: lumbar vertebra resection to shorten the gap between spinal cord stumps. Acta Neurochir (Wien). 1988;90:152–6.

    Article  Google Scholar 

  13. Jeong MA, Plunet W, Streijger F, Lee JH, Plemel JR, Park S, Lam CK, Liu J, Tetzlaff W. Intermittent fasting improves functional recovery after rat thoracic contusion spinal cord injury. J Neurotrauma. 2011;28:479–92.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D, Hamers FP, Schwab ME. Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol. 2005;58:706–19.

    Article  CAS  PubMed  Google Scholar 

  15. Merkler D, Metz GAS, Raineteau O, Dietz V, Schwab ME, Fouad K. Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci. 2001;21:3665–73.

    CAS  PubMed  Google Scholar 

  16. Poulsen DJ, Harrop JS, During MJ. Gene therapy for spinal cord injury and disease. J Spinal Cord Med. 2002;25:2–9.

    PubMed  Google Scholar 

  17. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999;5:1410–2.

    Article  CAS  PubMed  Google Scholar 

  18. Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest. 2012;122:3824–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Parolini O, Alviano F, Bagnara GP, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells. 2008;26:300–11.

    Article  PubMed  Google Scholar 

  20. Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR. Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res. 2003;12:271–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lin WP, Chen XW, Zhang LQ, Wu CY, Huang ZD, Lin JH. Effect of neuroglobin genetically modified bone marrow mesenchymal stem cells transplantation on spinal cord injury in rabbits. PLoS One. 2013;8:e63444. doi:10.1371/journal.pone.0063444.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bauchet L, Lonjon N, Perrin FE, Gilbert C, Privat A, Fattal C. Strategies for spinal cord repair after injury: a review of the literature and information. Ann Phys Rehabil Med. 2009;52:330–51.

    Article  CAS  PubMed  Google Scholar 

  23. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont A. Acute spinal cord injury. Part I: pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24:254–64.

    Article  CAS  PubMed  Google Scholar 

  24. Bretzner F, Liu J, Currie E, Roskams AJ, Tetzlaff W. Undesired effects of a combinatorial treatment for spinal cord injury—transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus. Eur J Neurosci. 2008;28:1795–807.

    Article  PubMed  Google Scholar 

  25. Maier IC, Ichiyama RM, Courtine G, Schnell L, Lavrov I, Edgerton R, Schwab ME. Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain. 2009;132:1426–40.

    Article  PubMed  Google Scholar 

  26. Nakamura M, Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res. 2013;23:70–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Coutts M, Keirstead HS. Stem cells for the treatment of spinal cord injury. Exp Neurol. 2008;209:368–77.

    Article  CAS  PubMed  Google Scholar 

  28. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25:4694–705.

    Article  CAS  PubMed  Google Scholar 

  29. Carson CT, Aigner S, Gage FH. Stem cells: the good, bad and barely in control. Nat Med. 2006;12:1259–68.

    Article  Google Scholar 

  30. Holm S. ‘New embryos’—new challenges for the ethics of stem cell research. Cells Tissues Organs. 2008;187(4):257–62.

    Article  PubMed  Google Scholar 

  31. Li JY, Christophersen NS, Hall V, Soulet D, Brundin P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci. 2008;31(3):146–53.

    Article  PubMed  Google Scholar 

  32. Lavker RM, Sun TT. Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci U S A. 2000;97:13473–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Toma JG, Akhavan M, Fernandes KJL, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3:778–84.

    Article  CAS  PubMed  Google Scholar 

  34. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res. 2000;61:364–70.

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell KE, Weiss ML, Michell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Aboueasa K, Hildreth T, Troyer D. Matrix cells from Wharton’s Jelly form neurons and glia. Stem Cells. 2003;21:50–60.

    Article  CAS  PubMed  Google Scholar 

  36. Coppil PD, Bartsch G, Siddiquil MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    Article  Google Scholar 

  37. Perry BC, Zhou D, Wu X, Yang FC, Byers MA, Chu TM, Hockema JJ, Woods EJ, Goebel WS. Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods. 2008;14:149–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Vawda R, Fehlings MG. Mesenchymal cells in the treatment of spinal cord injury: current & future perspectives. Curr Stem Cell Res Ther. 2013;8:25–38.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshihara H, Shumsky JS, Neuhuber B, Otsuka T, Fischer I, Murray M. Combining motor training with transplantation of rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries. Brain Res. 2006;1119:65–75.

    Article  CAS  PubMed  Google Scholar 

  40. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood. 2006;108:2114–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. In ‘t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhaia HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22:1338–45.

    Article  PubMed  Google Scholar 

  42. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation. 2005;79:528–35.

    Article  PubMed  Google Scholar 

  43. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109:235–42.

    Article  CAS  PubMed  Google Scholar 

  44. Sakuragawa N, Thangavel R, Mizuguchi M, Hirasawa M, Kamo I. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett. 1996;209:9–12.

    Article  CAS  PubMed  Google Scholar 

  45. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–59.

    Article  CAS  PubMed  Google Scholar 

  46. Sankar V, Tamilselvi P, Prem Kumar J, Sridharan N, Sridhar Skylab R, Vijaya Prakash KM. Novel neurotrophic factor secreted by amniotic epithelial cells. Biocell. 2009;33:81–9.

    Google Scholar 

  47. Olfert ED, Cross BM, McWilliam AA. Guide to the care and use of experimental animals, vol. 1. 2nd ed. Ottawa: Canadian Council on Animal Care; 1993.

    Google Scholar 

  48. Vallachira A. Veterinarian’s drug index. New Delhi: Jaypee Brothers Medical Publishers Ltd.; 1985. p. 172–4.

    Google Scholar 

  49. Levine JD, Gordon NC, Taiwo YO, Coderre TJ. Potentiation of pentazocine analgesia by low-dose naloxone. J Clin Invest. 1988;82:1574–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21.

    Article  CAS  PubMed  Google Scholar 

  51. Culling CFA. Handbook of histopathological and histochemical techniques. 3rd ed. London: Butterworths; 1972.

    Google Scholar 

  52. Elias H, Hyde H. An elementary introduction to stereology. Am J Anat. 1980;159:411–46.

    Article  Google Scholar 

  53. Sakuragawa N, Misawa H, Ohsugi K, Kakishita K, Ishii T, Thangavel R, Tohyama J, Elwan M, Yokoyama Y, Okuda O, Arai H, Ogino I, Sato K. Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett. 1997;232:53–6.

    Article  CAS  PubMed  Google Scholar 

  54. Elwan MA, Sakuragawa N. Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport. 1997;8:3435–8.

    Article  CAS  PubMed  Google Scholar 

  55. Bankiewicz KS, Palmatier M, Plunkett RJ, Cummins A, Oldfield EH. Reversal of hemiparkinsonian syndrome in nonhuman primates by amnion implantation into caudate nucleus. J Neurosurg. 1994;81:869–76.

    Article  CAS  PubMed  Google Scholar 

  56. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol. 2000;165:27–34.

    Article  CAS  PubMed  Google Scholar 

  57. Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 2003;980:48–56.

    Article  CAS  PubMed  Google Scholar 

  58. Okawa H, Okuda O, Arai H, Sakuragawa N, Sato K. Amniotic epithelial cells transform into neuron-like cells in the ischemic brain. Neuroreport. 2001;12:4003–7.

    Article  CAS  PubMed  Google Scholar 

  59. Sankar V, Muthusamy R. Role of amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118:11–7.

    Article  CAS  PubMed  Google Scholar 

  60. Zhi-yuan W, Guo-zhen H, Yi L, Xin W, Li-he G. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin Med J (Engl). 2006;119:2101–7.

    Google Scholar 

  61. Meng XT, Li C, Dong ZY, Liu JM, Li W, Liu Y, Xue H, Chen D. Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Cell Biol Int. 2008;32:1546–58.

    Article  CAS  PubMed  Google Scholar 

  62. Xue H, Zhang XY, Liu JM, Song Y, Li YF, Chen D. Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair. J Biomed Mater Res A. 2013;101:145–56.

    Article  PubMed  Google Scholar 

  63. Hasegawa K, Chang YW, Li H, Berlin Y, Ikeda O, Goldsmith NK, Grumet M. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Exp Neurol. 2004;193:394–410.

    Article  Google Scholar 

  64. McEwen ML, Springer JE. Quantification of locomotor recovery following spinal cord contusion in adult rats. J Neurotrauma. 2006;23:1632–53.

    Article  PubMed  Google Scholar 

  65. Ma J, Novikov LN, Wiber M, Kellerth JO. Delayed loss of spinal motoneurons after peripheral nerve injury in adult rats: a quantitative morphological study. Exp Brain Res. 2001;139:216–23.

    Article  CAS  PubMed  Google Scholar 

  66. Rabchevsky AG, Fugaccia I, Sullivan PG, Scheff SW. Cyclosporin A treatment following spinal cord injury to the rat: behavioral effects and stereological assessment of tissue sparing. J Neurotrauma. 2001;18:513–22.

    Article  CAS  PubMed  Google Scholar 

  67. Kalayci M, Coskun O, Cagavi F, Kanter M, Armutcu F, Gul S, Acikgoz B. Neuroprotective effects of ebselen on experimental spinal cord injury in rats. Neurochem Res. 2005;30:403–10.

    Article  CAS  PubMed  Google Scholar 

  68. Corti S, Locatelli F, Papadimitriou D, Bo RD, Nizzardo M, Nardini M, Donadoni C, Salani S, Fortunato F, Strazzer S, Bresolin N, Comi GP. Neural stem cells LewisX1CXCR41 modify disease progression in an amyotrophic lateral sclerosis model. Brain. 2007;130:1289–305.

    Article  PubMed  Google Scholar 

  69. Duggal N, Lach B. Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke. 2002;33:116–21.

    Article  CAS  PubMed  Google Scholar 

  70. Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res. 2000;62:585–90.

    Article  CAS  PubMed  Google Scholar 

  71. Uchida S, Suzuki Y, Araie M, Kashiwagi K, Otori Y, Sakuragawa N. Factors secreted by human amniotic epithelial cells promote the survival of rat retinal ganglion cells. Neurosci Lett. 2003;341:1–4.

    Article  CAS  PubMed  Google Scholar 

  72. Sakuragawa N, Elwan MA, Uchida S, Fujii T, Kawashima K. Non-neuronal neurotransmitters and neurotrophic factors in amniotic epithelial cells: expression and function in humans and monkey. Jpn J Pharmacol. 2001;85:20–3.

    Article  CAS  PubMed  Google Scholar 

  73. Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20:173–7.

    Article  CAS  PubMed  Google Scholar 

  74. Weiner LP. Neural stem cells—methods and protocols. 2nd ed. Totova: Humana Press; 2008. p. 1–134.

    Book  Google Scholar 

  75. Pratama G, Vaghjiani V, Tee JY, Liu YH, Chan J, Tan C, Murthi P, Gargett C, Manuelpillai U. Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One. 2011;6:e26136.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, Plunet WT, Tsai EC, Baptiste D, Smithson LJ, Kawaja MD, Fehlings MG, Kwon BK. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma. 2011;28:1611–82.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

Part of the findings were presented in the First International Workshop on Placenta-derived Stem cells conducted at Brescia, Italy during 23rd to 25th March 2007 proceedings of which were published [19]. This study was supported by UGC-UWPFE research grant and research starter fund from University of Madras to Sankar Venkatachalam. This study formed a part of PhD thesis submitted by Prem Kumar Jayapal to University of Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Venkatachalam M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jayapal, P.K., Neelamegan, S., Palaniappan, T., Rajan, S.S., Krishnan Muthaiah, V.P., Venkatachalam, S. (2014). Human Amniotic Epithelial Cells Transplantation for Contusive Spinal Cord Injury Repair. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_22

Download citation

Publish with us

Policies and ethics