Skip to main content

Treatment of Liver Disease Using Placental Stem Cells: Feasibility of Placental Stem Cells in Liver Diseases: Potential Implication of New Cell Therapy-Based Strategies for Hepatic Diseases

  • Chapter
  • First Online:
Perinatal Stem Cells

Abstract

Translational studies have explored the therapeutic effects of stem cells, raising hopes for the treatment of numerous diseases. Liver diseases are the most common medical diagnoses worldwide and millions of people suffer from difficult-to-treat liver diseases. Currently, orthotopic liver transplantation is the only effective treatment of end-stage hepatic disease, but this procedure is associated with many problems, including the donor scarcity, operative damage, high cost, risk of immune rejection, and the lifelong immunosuppressive treatments. Therefore, the development of therapies is required and currently under investigation all over the world. Use of cell therapy is increasing for the treatment of damaged tissue or organ regeneration. Mesenchymal stem cells (MSCs), an adult stem cell population, have characteristics of self-renewal, multipotency, and immunomodulation without ethical problem and risk for teratoma formation. Placenta-derived stem cells (PDSCs), which have received much research attention, display multi-lineage differentiation potential, and they are free of ethical concerns, easily accessible, abundant, and strongly immunosuppressive. There are several types of PDSCs. In this chapter, we will explain the characterization of several kinds of PDSCs and discuss recent investigations that study the therapeutic potential of PDSCs in repair of injured liver with a view to its utility in regenerative medicine. Although there remain many problems we should solve, many results suggest that human stem cells therapy including PDSCs is one of the new promising technologies for intractable human liver damage/diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD-MSCs:

Adipose-derived mesenchymal stem cells

AECs:

Amniotic epithelial cells

AM-MSCs:

Amniotic mesenchymal stem cells

BM-MSCs:

Bone marrow-derived mesenchymal stem cells

CCl4:

Carbon tetrachloride

CP-MSCs:

Chorionic plate-derived mesenchymal stem cells

CV-MSCs:

Chorionic villi-derived mesenchymal stem cells

DTP:

Direct transplantation into the liver

EPCs:

Endothelial progenitor cells

ESCs:

Embryonic stem cells

HLA:

Human leukocyte antigen

IDO:

2,3-Dioxygenase

MHC:

Major histocompatibility complex

NTP:

Non-transplantation

PD-MSCs:

Placenta-derived mesenchymal stem cells

PDSCs:

Placenta-derived stem cells

STP:

Intrasplenic transplantation

TTP:

Intravenous transplantation via the tail vein

WJ-MSCs:

Wharton’s jelly-derived mesenchymal stem cells of the umbilical cord

References

  1. Daley GQ, Scadden DT. Prospects for stem cell-based therapy. Cell. 2008;132:544–8.

    Article  CAS  PubMed  Google Scholar 

  2. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  3. Bieback K, Kern S, Klter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells. 2004;22:625–34.

    Article  PubMed  Google Scholar 

  4. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22:1338–45.

    Article  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  6. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7: 211–28.

    Article  CAS  PubMed  Google Scholar 

  7. Alt E, Yan Y, Gehmert S, Song YH, Altman A, Vykoukal D, Bai X. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell. 2011;103:197–208.

    Article  CAS  PubMed  Google Scholar 

  8. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180:2581–7.

    Article  CAS  PubMed  Google Scholar 

  9. Chang CJ, Yen ML, Chen YC, Chien CC, Huang HI, Bai CH, Yen BL. Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells. 2006;24:2466–77.

    Article  CAS  PubMed  Google Scholar 

  10. Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26:300–11.

    Article  PubMed  Google Scholar 

  11. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22:649–58.

    Article  CAS  PubMed  Google Scholar 

  12. Bailo M, Soncini M, Vertua E, Signoroni PB, Sanzone S, Lombardi G, Arienti D, Calamani F, Zatti D, Paul P, Albertini A, Zorzi F, Cavagnini A, Candotti F, Wengler GS, Parolini O. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation. 2004;78:1439–48.

    Article  PubMed  Google Scholar 

  13. Chang CM, Kao CL, Chang YL, Yang MJ, Chen YC, Sung BL, Tsai TH, Chao KC, Chiou SH, Ku HH. Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun. 2007;357:414–20.

    Article  CAS  PubMed  Google Scholar 

  14. Riehle KJ, Dan YY, Campbell JS, Fausto N. New concepts in liver regeneration. J Gastroenterol Hepatol. 2011;26 Suppl 1:203–12.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Souza BS, Nogueira RC, de Oliveira SA, de Freitas LA, Lyra LG, Ribeiro dos Santos R, Lyra AC, Soares MB. Current status of stem cell therapy for liver diseases. Cell Transplant. 2009;18:1261–79.

    Article  PubMed  Google Scholar 

  16. Findlay JY, Fix OK, Paugam-Burtz C, Liu L, Sood P, Tomlanovich SJ, Emond J. Critical care of the end-stage liver disease patient awaiting liver transplantation. Liver Transpl. 2011;17:496–510.

    Article  PubMed  Google Scholar 

  17. Khedmat H, Taheri S. Late onset post transplantation lymphoproliferative disorders: analysis of international data from 5 studies. Ann Transplant. 2009;14:80–5.

    PubMed  Google Scholar 

  18. Piscaglia AC, Novi M, Campanale M, Gasbarrini A. Stem cell-based therapy in gastroenterology and hepatology. Minim Invasive Ther Allied Technol. 2008;17:100–18.

    Article  PubMed  Google Scholar 

  19. Russo FP, Parola M. Stem and progenitor cells in liver regeneration and repair. Cytotherapy. 2011;13:135–44.

    Article  PubMed  Google Scholar 

  20. Alison MR, Lin WR. Hepatocyte turnover and regeneration: virtually a virtuoso performance. Hepatology. 2011;53:1393–6.

    Article  CAS  PubMed  Google Scholar 

  21. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE, Christ B. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009;58:570–81.

    Article  CAS  PubMed  Google Scholar 

  22. Lee MJ, Jung J, Na KH, Moon JS, Lee HJ, Kim JH, Kim GI, Kwon SW, Hwang SG, Kim GJ. Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl(4)-injured liver: potential application to the treatment of hepatic diseases. J Cell Biochem. 2010;111:1453–63.

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Liu P, Liu C, Xiang D, Deng L, Li W, Wangensteen K, Song J, Ma Y, Hui L, Wei L, Li L, Ding X, Hu Y, He Z, Wang X. Hepatoblast-like progenitor cells derived from embryonic stem cells can repopulate livers of mice. Gastroenterology. 2010;139:2158–69.e2158.

    Article  CAS  PubMed  Google Scholar 

  24. Tao XR, Li WL, Su J, Jin CX, Wang XM, Li JX, Hu JK, Xiang ZH, Lau JT, Hu YP. Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyte-like cells in injured livers of SCID mice. J Cell Biochem. 2009;108:693–704.

    Article  CAS  PubMed  Google Scholar 

  25. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.

    Article  CAS  PubMed  Google Scholar 

  27. Kim MJ, Shin KS, Jeon JH, Lee DR, Shim SH, Kim JK, Cha DH, Yoon TK, Kim GJ. Human chorionic-plate-derived mesenchymal stem cells and Wharton’s jelly-derived mesenchymal stem cells: a comparative analysis of their potential as placenta-derived stem cells. Cell Tissue Res. 2011;346:53–64.

    Article  PubMed  Google Scholar 

  28. Witkowska-Zimny M, Wrobel E. Perinatal sources of mesenchymal stem cells: Wharton’s jelly, amnion and chorion. Cell Mol Biol Lett. 2011;16:493–514.

    Article  PubMed  Google Scholar 

  29. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A. 1989;86:3828–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Malek A, Bersinger NA. Human placental stem cells: biomedical potential and clinical relevance. J Stem Cells. 2011;6:75–92.

    PubMed  Google Scholar 

  31. Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med. 2008;12:730–42.

    Article  CAS  PubMed  Google Scholar 

  32. Evangelista M, Soncini M, Parolini O. Placenta-derived stem cells: new hope for cell therapy? Cytotechnology. 2008;58:33–42.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Parolini O, Alviano F, Bergwerf I, Boraschi D, De Bari C, De Waele P, Dominici M, Evangelista M, Falk W, Hennerbichler S, Hess DC, Lanzoni G, Liu B, Marongiu F, McGuckin C, Mohr S, Nolli ML, Ofir R, Ponsaerts P, Romagnoli L, Solomon A, Soncini M, Strom S, Surbek D, Venkatachalam S, Wolbank S, Zeisberger S, Zeitlin A, Zisch A, Borlongan CV. Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev. 2010;19: 143–54.

    Article  PubMed  Google Scholar 

  34. Shin KS, Lee HJ, Jung J, Cha DH, Kim GJ. Culture and in vitro hepatogenic differentiation of placenta-derived stem cells, using placental extract as an alternative to serum. Cell Prolif. 2010;43: 435–44.

    Article  CAS  PubMed  Google Scholar 

  35. Lee JM, Jung J, Lee HJ, Jeong SJ, Cho KJ, Hwang SG, Kim GJ. Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. Int Immunopharmacol. 2012;13:219–24.

    Article  CAS  PubMed  Google Scholar 

  36. Lee HJ, Jung J, Cho KJ, Lee CK, Hwang SG, Kim GJ. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation. 2012;84:223–31.

    Article  CAS  PubMed  Google Scholar 

  37. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004;6:543–53.

    Article  CAS  PubMed  Google Scholar 

  38. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664–73.

    Article  CAS  PubMed  Google Scholar 

  39. Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008;26:591–9.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G. Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. 2011;7: 342–63.

    Article  PubMed  Google Scholar 

  41. Parolini O, Alviano F, Betz AG, Bianchi DW, Gotherstrom C, Manuelpillai U, Mellor AL, Ofir R, Ponsaerts P, Scherjon SA, Weiss ML, Wolbank S, Wood KJ, Borlongan CV. Meeting report of the first conference of the International Placenta Stem Cell Society (IPLASS). Placenta. 2011;32 Suppl 4:S285–90.

    Article  PubMed  Google Scholar 

  42. Ishii R, Kami D, Toyoda M, Makino H, Gojo S, Ishii T, Umezawa A. Placenta to cartilage: direct conversion of human placenta to chondrocytes with transformation by defined factors. Mol Biol Cell. 2012;23:3511–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 2009;30:2–10.

    Article  CAS  PubMed  Google Scholar 

  44. Li C, Zhang W, Jiang X, Mao N. Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells. Cell Tissue Res. 2007;330:437–46.

    Article  PubMed  Google Scholar 

  45. Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1:296–305.

    Article  CAS  PubMed  Google Scholar 

  46. Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007;7:11.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells. 2006;24:781–92.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Soda Y, Takahashi K, Bai Y, Mitsuru A, Igura K, Satoh H, Yamaguchi S, Tani K, Tojo A, Takahashi TA. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells. Biochem Biophys Res Commun. 2006;351:853–9.

    Article  CAS  PubMed  Google Scholar 

  49. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25:319–31.

    Article  CAS  PubMed  Google Scholar 

  50. Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 2011;7:1–16.

    Article  CAS  PubMed  Google Scholar 

  51. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259:150–6.

    Article  CAS  PubMed  Google Scholar 

  52. Gu YZ, Xue Q, Chen YJ, Yu GH, Qing MD, Shen Y, Wang MY, Shi Q, Zhang XG. Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum Immunol. 2013;74:267–76.

    Article  CAS  PubMed  Google Scholar 

  53. Jang MJ, Kim HS, Lee HG, Kim GJ, Jeon HG, Shin HS, Chang SK, Hur GH, Chong SY, Oh D, Chung HM. Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta Haematol. 2013;129:197–206.

    Article  CAS  PubMed  Google Scholar 

  54. Jones BJ, Brooke G, Atkinson K, McTaggart SJ. Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta. 2007;28:1174–81.

    Article  CAS  PubMed  Google Scholar 

  55. Rasmusson I, Ringdn O, Sundberg B, Le Blanc K. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76:1208–13.

    Article  PubMed  Google Scholar 

  56. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389–97.

    Article  CAS  PubMed  Google Scholar 

  57. Horslen SP, Fox IJ. Hepatocyte transplantation. Transplantation. 2004;77:1481–6.

    Article  PubMed  Google Scholar 

  58. Carloni G, Ponzetto A, Marchese R, Brunetti E, Crema A. Liver stem cells and possible clinical applications. Curr Stem Cell Res Ther. 2010;5:314–25.

    Article  CAS  PubMed  Google Scholar 

  59. Nussler A, Konig S, Ott M, Sokal E, Christ B, Thasler W, Brulport M, Gabelein G, Schormann W, Schulze M, Ellis E, Kraemer M, Nocken F, Fleig W, Manns M, Strom SC, Hengstler JG. Present status and perspectives of cell-based therapies for liver diseases. J Hepatol. 2006;45:144–59.

    Article  CAS  PubMed  Google Scholar 

  60. Li YS, Harn HJ, Hsieh DK, Wen TC, Subeq YM, Sun LY, Lin SZ, Chiou TW. Cells and materials for liver tissue engineering. Cell Transplant. 2013;22:685–700.

    Article  PubMed  Google Scholar 

  61. Okumoto K, Saito T, Haga H, Hattori E, Ishii R, Karasawa T, Suzuki A, Misawa K, Sanjo M, Ito JI, Sugahara K, Saito K, Togashi H, Kawata S. Characteristics of rat bone marrow cells differentiated into a liver cell lineage and dynamics of the transplanted cells in the injured liver. J Gastroenterol. 2006;41:62–9.

    Article  PubMed  Google Scholar 

  62. Oyagi S, Hirose M, Kojima M, Okuyama M, Kawase M, Nakamura T, Ohgushi H, Yagi K. Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol. 2006;44:742–8.

    Article  CAS  PubMed  Google Scholar 

  63. Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, Togashi I, Suzuki J, Satake M, Nakamizo H, Tanaka M, Mori T, Segawa K, Nishiyama N, Inoue J, Makino H, Miyado K, Ogawa S, Yoshimura Y, Umezawa A. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res. 2010;106:1613–23.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One. 2011;6:e16789.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Jung KH, Shin HP, Lee S, Lim YJ, Hwang SH, Han H, Park HK, Chung JH, Yim SV. Effect of human umbilical cord blood-derived mesenchymal stem cells in a cirrhotic rat model. Liver Int. 2009;29: 898–909.

    Article  CAS  PubMed  Google Scholar 

  66. Zhao DC, Lei JX, Chen R, Yu WH, Zhang XM, Li SN, Xiang P. Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats. World J Gastroenterol. 2005;11:3431–40.

    PubMed  Google Scholar 

  67. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest. 2007;117: 539–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Constandinou C, Henderson N, Iredale JP. Modeling liver fibrosis in rodents. Methods Mol Med. 2005;117:237–50.

    PubMed  Google Scholar 

  69. Lee GP, Jeong WI, Jeong DH, Do SH, Kim TH, Jeong KS. Diagnostic evaluation of carbon tetrachloride-induced rat hepatic cirrhosis model. Anticancer Res. 2005;25:1029–38.

    PubMed  Google Scholar 

  70. Guyot C, Combe C, Desmouliere A. The common bile duct ligation in rat: a relevant in vivo model to study the role of mechanical stress on cell and matrix behaviour. Histochem Cell Biol. 2006;126:517–23.

    Article  CAS  PubMed  Google Scholar 

  71. Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology. 2005;41:535–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Lin SZ, Chang YJ, Liu JW, Chang LF, Sun LY, Li YS, Luo GH, Liao CH, Chen PH, Chen TM, Lee RP, Yang KL, Harn HJ, Chiou TW. Transplantation of human Wharton’s Jelly-derived stem cells alleviates chemically induced liver fibrosis in rats. Cell Transplant. 2010;19:1451–63.

    Article  PubMed  Google Scholar 

  73. Manuelpillai U, Lourensz D, Vaghjiani V, Tchongue J, Lacey D, Tee JY, Murthi P, Chan J, Hodge A, Sievert W. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLoS One. 2012;7:e38631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Sant’Anna LB, Cargnoni A, Ressel L, Vanosi G, Parolini O. Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transplant. 2011;20:441–53.

    Article  PubMed  Google Scholar 

  75. Marongiu F, Gramignoli R, Dorko K, Miki T, Ranade AR, Paola Serra M, Doratiotto S, Sini M, Sharma S, Mitamura K, Sellaro TL, Tahan V, Skvorak KJ, Ellis EC, Badylak SF, Davila JC, Hines R, Laconi E, Strom SC. Hepatic differentiation of amniotic epithelial cells. Hepatology. 2011;53:1719–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Vaghjiani V, Vaithilingam V, Tuch B, Sievert W, Manuelpillai U. Deriving hepatocyte-like cells from placental cells for transplantation. Curr Stem Cell Res Ther. 2013;8:15–24.

    Article  CAS  PubMed  Google Scholar 

  77. Dawe GS, Tan XW, Xiao ZC. Cell migration from baby to mother. Cell Adh Migr. 2007;1:19–27.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, Williams ED, Sievert W. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl(4)-treated mice. Cell Transplant. 2010;19:1157–68.

    Article  PubMed  Google Scholar 

  79. Jung J, Ho Choi J, Lee Y, Park JW, Oh IH, Hwang SG, Kim KS, Jin KG. Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4-injured rat liver model via increased autophagic mechanism. Stem Cells. 2013;31(8):1584–96.

    Article  CAS  PubMed  Google Scholar 

  80. Jung J, Na KH, Lee MJ, Moon J, Kim GI, Jang JJ, Hwang SG, Jin KG. Efficacy of chorionic plate-derived mesenchymal stem cells isolated from placenta in CCl4-injured rat liver depends on transplantation routes. Tissue Eng Regener Med. 2013;10:10–7.

    Article  CAS  Google Scholar 

  81. Xu YQ, Liu ZC. Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches. Stem Cell Rev. 2008;4:101–12.

    Article  PubMed  Google Scholar 

  82. Higashiyama R, Inagaki Y, Hong YY, Kushida M, Nakao S, Niioka M, Watanabe T, Okano H, Matsuzaki Y, Shiota G, Okazaki I. Bone marrow-derived cells express matrix metalloproteinases and contribute to regression of liver fibrosis in mice. Hepatology. 2007;45: 213–22.

    Article  CAS  PubMed  Google Scholar 

  83. Sakaida I, Terai S, Yamamoto N, Aoyama K, Ishikawa T, Nishina H, Okita K. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology. 2004;40:1304–11.

    Article  PubMed  Google Scholar 

  84. Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, Lombardi G, Albertini A, Wengler GS, Parolini O. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant. 2009;18:405–22.

    Article  PubMed  Google Scholar 

  85. Huppertz B. The feto-maternal interface: setting the stage for potential immune interactions. Semin Immunopathol. 2007;29: 83–94.

    Article  PubMed  Google Scholar 

  86. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.

    Article  CAS  PubMed  Google Scholar 

  87. Desmouliere A, Badid C, Bochaton-Piallat ML, Gabbiani G. Apoptosis during wound healing, fibrocontractive diseases and vascular wall injury. Int J Biochem Cell Biol. 1997;29:19–30.

    Article  CAS  PubMed  Google Scholar 

  88. Schutte B, Ramaekers FC. Molecular switches that govern the balance between proliferation and apoptosis. Prog Cell Cycle Res. 2000;4:207–17.

    Article  CAS  PubMed  Google Scholar 

  89. Fujiyoshi M, Ozaki M. Molecular mechanisms of liver regeneration and protection for treatment of liver dysfunction and diseases. J Hepatobiliary Pancreat Sci. 2011;18:13–22.

    Article  PubMed  Google Scholar 

  90. Arduino DM, Esteves AR, Cardoso SM. Mitochondria drive autophagy pathology via microtubule disassembly: a new hypothesis for Parkinson disease. Autophagy. 2013;9:112–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Rodriguez-Rocha H, Garcia-Garcia A, Panayiotidis MI, Franco R. DNA damage and autophagy. Mutat Res. 2011;711:158–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Ichim TE, Solano F, Brenes R, Glenn E, Chang J, Chan K, Riordan NH. Placental mesenchymal and cord blood stem cell therapy for dilated cardiomyopathy. Reprod Biomed Online. 2008;16: 898–905.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gi Jin Kim Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, G.J. (2014). Treatment of Liver Disease Using Placental Stem Cells: Feasibility of Placental Stem Cells in Liver Diseases: Potential Implication of New Cell Therapy-Based Strategies for Hepatic Diseases. In: Atala, A., Murphy, S. (eds) Perinatal Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1118-9_14

Download citation

Publish with us

Policies and ethics