Skip to main content

Stanley Symmetric Functions and Peterson Algebras

  • Chapter
  • First Online:
k-Schur Functions and Affine Schubert Calculus

Part of the book series: Fields Institute Monographs ((FIM,volume 33))

Abstract

This purpose of this chapter is to introduce Stanley symmetric functions and affine Stanley symmetric functions from the combinatorial and algebraic point of view. The presentation roughly follows three lectures I gave at a conference titled “Affine Schubert Calculus” held in July of 2010 at the Fields Institute in Toronto.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The author was supported by NSF grants DMS-0652641, DMS-0901111, and DMS-1160726, and by a Sloan Fellowship.

  2. 2.

    see http://www.fields.utoronto.ca/programs/scientific/10-11/schubert/

  3. 3.

    Our conventions differ from Stanley’s original definitions by \(w \leftrightarrow {w}^{-1}\).

Bibliography

  1. S. Assaf, Dual Equivalence Graphs I: A Combinatorial Proof of LLT and Macdonald Positivity. arXiv:1005.3759 (preprint)

    Google Scholar 

  2. J. Bandlow, A. Schilling, M. Zabrocki, The Murnaghan–Nakayama rule for k-Schur functions. J. Comb. Theory Ser. A 118(5), 1588–1607 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. E. Bender, D.E. Knuth, Enumeration of plane partitions. J. Comb. Theory Ser. A 13, 40–54 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Bergeron, F. Sottile, Skew Schubert functions and the Pieri formula for flag manifolds. Trans. Am. Math. Soc. 354(2), 651–673 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Billey, M. Haiman, Schubert polynomials for the classical groups. J. Am. Math. Soc. 8(2), 443–482 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Billey, W. Jockusch, R. Stanley, Some combinatorial properties of Schubert polynomials. J. Algebr. Comb. 2, 345–374 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Billey, T.K. Lam, Vexillary elements in the hyperoctahedral group. J. Algebr. Comb. 8(2), 139–152 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Björner, F. Brenti, Affine permutations of type A. Electron. J. Comb. 3 (1996). Research paper 18, 35 pages

    Google Scholar 

  9. J. Brichard, The center of the nilCoxeter and 0-Hecke algebras. arXiv:0811.2590 (preprint)

    Google Scholar 

  10. A. Buch, Stanley symmetric functions and quiver varieties. J. Algebra 235(1), 243–260 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians. Acta Math. 189(1), 37–78 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Buch, A. Kresch, M. Shimozono, H. Tamvakis, A. Yong, Stable Grothendieck polynomials and K-theoretic factor sequences. Math. Ann. 340, 359–382 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. P.-E. Chaput, L. Manivel, N. Perrin, Affine symmetries of the equivariant cohomology ring of rational homogeneous spaces. Math. Res. Lett. 16, 7–21 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. P. Edelman, C. Greene, Balanced tableaux. Adv. Math. 63, 42–99 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Fomin, C. Greene, Noncommutative Schur functions and their applications. Discret. Math. 193, 179–200 (1998). Reprinted in the Discrete Math Anniversary Volume 306, 1080–1096 (2006)

    Google Scholar 

  16. S. Fomin, A.N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, in Proceedings of the 6th International Conference on Formal Power Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183–190

    Google Scholar 

  17. S. Fomin, A.N. Kirillov, Combinatorial B n -analogues of Schubert polynomials. Trans. Am. Math. Soc. 348(9), 3591–3620 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. S. Fomin, N. Reading, Root systems and generalized associahedra. Lecture notes for the IAS/Park City Graduate Summer School in Geometric Combinatorics

    Google Scholar 

  19. S. Fomin, R. Stanley, Schubert polynomials and the nilCoxeter algebra. Adv. Math. 103, 196–207 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. V. Ginzburg, Perverse sheaves on a loop group and Langlands’ duality. math.AG/9511007 (preprint)

    Google Scholar 

  21. M. Goresky, R. Kottwitz, R. MacPherson, Homology of affine Springer fibers in the unramified case. Duke Math. J. 121, 509–561 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Haiman, Dual equivalence with applications, including a conjecture of Proctor. Discret. Math. 99, 79–113 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Z. Hamaker, B. Young, Relating Edelman-Greene insertion to the Little map. arXiv:1210.7119 (preprint)

    Google Scholar 

  24. J.E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics, vol. 29 (Cambridge University Press, Cambridge, 1990), pp. xii+204

    Google Scholar 

  25. V.G. Kac, Infinite-Dimensional Lie Algebras, 3rd edn. (Cambridge University Press, Cambridge, 1990), pp. xxii+400. ISBN:0-521-37215-1

    Google Scholar 

  26. M. Kashiwara, M. Shimozono, Equivariant K-theory of affine flag manifolds and affine Grothendieck polynomials. Duke Math. J. 148(3), 501–538 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Knutson, T. Lam, D. Speyer, Positroid varieties: juggling and geometry, Compositio Mathematica 149, 1710–1752 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Kostant, S. Kumar, The nil Hecke ring and cohomology of GP for a Kac–Moody group G. Adv. Math. 62(3), 187–237 (1986)

    Google Scholar 

  29. S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory. Progress in Mathematics, vol. 204 (Birkhäuser, Boston, 2002), pp. xvi+606

    Google Scholar 

  30. T. Lam, Affine Schubert classes, Schur positivity, and combinatorial Hopf algebras. Bull. Lond. Math. Soc. 43(2), 328–334 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Lam, Affine Stanley symmetric functions. Am. J. Math. 128(6), 1553–1586 (2006)

    Article  MATH  Google Scholar 

  32. T. Lam, Schubert polynomials for the affine Grassmannian. J. Am. Math. Soc. 21(1), 259–281 (2008)

    Article  MATH  Google Scholar 

  33. T. Lam, L. Lapointe, J. Morse, M. Shimozono, Affine insertion and Pieri rules for the affine Grassmannian. Mem. Am. Math. Soc. 208(977), xii+82 (2010). ISBN:978-0-8218-4658-2

    Google Scholar 

  34. T. Lam, L. Lapointe, J. Morse, M. Shimozono, k-shape poset and branching of k-Schur functions. Mem. Am. Math. Soc. 223(1050), April 2013, 101 pages, Softcover, ISBN: 978-0-8218-7294-9, 2010

    Google Scholar 

  35. T. Lam, A. Schilling, M. Shimozono, K-theoretic Schubert calculus of the affine Grassmannian. Compositio Mathematica 146(4), 811–852 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. T. Lam, A. Schilling, M. Shimozono, Schubert polynomials for the affine Grassmannian of the symplectic group. Math. Z. 264, 765–811 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. T. Lam, M. Shimozono, A Little bijection for affine Stanley symmetric functions. Seminaire Lotharingien de Combinatoire 54A, B54Ai (2006)

    Google Scholar 

  38. T. Lam, M. Shimozono, Dual graded graphs for Kac-Moody algebras. Algebra Number Theory 1, 451–488 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Lam, M. Shimozono, From double quantum Schubert polynomials to k-double Schur functions via the Toda lattice. arXiv:1109.2193 (preprint)

    Google Scholar 

  40. T. Lam, M. Shimozono, Quantum cohomology of GP and homology of affine Grassmannian. Acta Math. 204, 49–90 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. L. Lapointe, A. Lascoux, J. Morse, Tableau atoms and a new Macdonald positivity conjecture. Duke Math. J. 116(1), 103–146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. L. Lapointe, J. Morse, A k-tableau characterization of k-Schur functions. Adv. Math. 213(1), 183–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. L. Lapointe, J. Morse, Tableaux on k + 1-cores, reduced words for affine permutations, and k-Schur expansions. J. Comb. Theory Ser. A 112(1), 44–81 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. A. Lascoux, B. Leclerc, J.-Y. Thibon, The plactic monoid, in Algebraic Combinatorics on Words, ed. by M. Lothaire (Cambridge University Press, Cambridge/U.K., 2002)

    Google Scholar 

  45. A. Lascoux, M.-P. Schützenberger, Schubert polynomials and the Littlewood-Richardson rule. Lett. Math. Phys. 10(2–3), 111–124 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  46. A. Lascoux, M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux. C. R. Acad. Sci. Paris Ser. I Math. 295(11), 629–633 (1982)

    MATH  MathSciNet  Google Scholar 

  47. N.C. Leung, C. Li, Gromov-Witten invariants for G/B and Pontryagin product for Ω K. Trans. Am. Math. Soc. 364(5), 2567–2599 (2012)

    Google Scholar 

  48. D. Little, Combinatorial aspects of the Lascoux-Schützenberger tree. Adv. Math. 174(2), 236–253 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edn. (Oxford University Press, New York, 1995)

    MATH  Google Scholar 

  50. P. McNamara, Cylindric skew Schur functions. Adv. Math. 205(1), 275–312 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  51. D. Peterson, Quantum cohomology of G/P. Lecture Notes (MIT, 1997)

    Google Scholar 

  52. S. Pon, Affine Stanley symmetric functions for classical types. J. Algebr. Comb. 36(4), 595–622 (2012). And Ph.D thesis, UC Davis, 2010

    Google Scholar 

  53. A. Postnikov, Affine approach to quantum Schubert calculus. Duke Math. J. 128(3), 473–509 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  54. R. Stanley, Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 2 (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  55. R. Stanley, On the number of reduced decompositions of elements of Coxeter groups. Eur. J. Comb. 5, 359–372 (1984)

    Article  MATH  Google Scholar 

  56. H. Thomas, A. Yong, A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus. Algebra Number Theory 3(2), 121–148 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  57. H. Thomas, A. Yong, Longest strictly increasing subsequences, Plancherel measure and the Hecke insertion algorithm. Adv. Appl. Math. 46, 610–642 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lam, T., Lapointe, L., Morse, J., Schilling, A., Shimozono, M., Zabrocki, M. (2014). Stanley Symmetric Functions and Peterson Algebras. In: k-Schur Functions and Affine Schubert Calculus. Fields Institute Monographs, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0682-6_3

Download citation

Publish with us

Policies and ethics