Skip to main content

Membrane Protein Production in Escherichia coli: Overview and Protocols

  • Chapter
  • First Online:
Membrane Proteins Production for Structural Analysis

Abstract

Structural biology of membrane proteins is hampered by the difficulty to express and purify them in a large amount. Despite recent progress in biophysical methods that have reduced the need of biological materials, membrane protein production remains a bottleneck in the field and will require further conceptual and technological developments. Among the unique 424 membrane protein structures found in protein databases, about half of them come from proteins produced in Escherichia coli. In this chapter, we have reviewed the existing bacterial expression systems. The T7 RNA polymerase-based expression system accounts for up to 62 % of solved heterologous membrane protein structures. Among the dozen of bacterial hosts available, the mutant hosts C41(DE3) and C43(DE3) have contributed to half of the integral membrane protein structures that were solved after production using the T7 expression system. After a general introduction on this expression system, the protocol section of this chapter provides detailed protocols to select bacterial expression mutant hosts and to optimize culture conditions.

Georges Hattab and Annabelle Y. T. Suisse are equal first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdine A, Verhoeven MA, Park K-H et al (2010) Structural study of the membrane protein MscL using cell-free expression and solid-state NMR. J Magn Reson 204:155–159. doi:10.1016/j.jmr.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  • Alfasi S, Sevastsyanovich Y, Zaffaroni L et al (2011) Use of GFP fusions for the isolation of Escherichia coli strains for improved production of different target recombinant proteins. J Biotechnol 156:11–21. doi:10.1016/j.jbiotec.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  • Alkhalfioui F, Logez C, Bornert O, Wagner R (2011) In: Robinson AS (ed) Production of membrane proteins: strategies for expression and isolation. Wiley-VCH, Weinheim, pp 75–108

    Google Scholar 

  • Arechaga I, Miroux B, Karrasch S et al (2000) Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F1F0 ATP synthase. FEBS Lett 482:215–219

    Article  CAS  PubMed  Google Scholar 

  • Arechaga I, Miroux B, Runswick MJ, Walker JE (2003) Over-expression of Escherichia coli F1F0–ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett 547:97–100

    Article  CAS  PubMed  Google Scholar 

  • Banères J-L, Popot J-L, Mouillac B (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 29:314–322. doi:10.1016/j.tibtech.2011.03.002

    Article  PubMed  Google Scholar 

  • Bocquet N, Nury H, Baaden M et al (2008) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114. doi:10.1038/nature07462

    Article  PubMed  Google Scholar 

  • Catoire LJ, Damian M, Giusti F et al (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J Am Chem Soc 132:9049–9057. doi:10.1021/ja101868c

    Article  CAS  PubMed  Google Scholar 

  • Chae PS, Rasmussen SGF, Rana RR et al (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008. doi:10.1038/nmeth.1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Song J, Sui S, Wang D-N (2003) DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr Purif 32:221–231. doi:10.1016/S1046-5928(03)00233-X

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drew D, Lerch M, Kunji E et al (2006) Optimization of membrane protein overexpression and purification using GFP fusions. Nat Methods 3:303–313. doi:10.1038/nmeth0406-303

    Article  CAS  PubMed  Google Scholar 

  • Eriksson HM, Wessman P, Ge C et al (2009) Massive formation of intracellular membrane vesicles in Escherichia coli by a monotopic membrane-bound lipid glycosyltransferase. J Biol Chem 284:33904–33914. doi:10.1074/jbc.M109.021618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fairman JW, Dautin N, Wojtowicz D et al (2012) Crystal structures of the outer membrane domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y. pseudotuberculosis. Structure 20:1233–1243. doi:10.1016/j.str.2012.04.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frelet-Barrand A, Boutigny S, Kunji ERS, Rolland N (2010) Membrane protein expression in Lactococcus lactis. Methods Mol Biol 601:67–85. doi:10.1007/978-1-60761-344-2_5

    Article  CAS  PubMed  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hattab G, Moncoq K, Warschawski DE, Miroux B (2014) Escherichia coli as host for membrane protein structure determination: a global analysis. Biophys J 106(2, Suppl 1):46a

    Google Scholar 

  • Jidenko M, Nielsen RC, Sørensen TL-M et al (2005) Crystallization of a mammalian membrane protein overexpressed in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 102:11687–11691. doi:10.1073/pnas.0503986102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miot M, Betton J-M (2011) Reconstitution of the Cpx signaling system from cell-free synthesized proteins. New Biotechnol 28:277–281. doi:10.1016/j.nbt.2010.06.012

    Article  CAS  Google Scholar 

  • Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298. doi:10.1006/jmbi.1996.0399

    Article  CAS  PubMed  Google Scholar 

  • Miroux B, Frossard V, Raimbault S et al (1993) The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. EMBO J 12:3739–3745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moffatt BA, Studier FW (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49:221–227

    Article  CAS  PubMed  Google Scholar 

  • Mouillac B, Banères J-L (2010) Mammalian membrane receptors expression as inclusion bodies in Escherichia coli. Methods Mol Biol 601:39–48. doi:10.1007/978-1-60761-344-2_3

    Article  CAS  PubMed  Google Scholar 

  • Nørholm MHH, Toddo S, Virkki MTI et al (2013) Improved production of membrane proteins in Escherichia coli by selective codon substitutions. FEBS Lett 587:2352–2358. doi:10.1016/j.febslet.2013.05.063

    Article  PubMed  Google Scholar 

  • Nury H, Renterghem CV, Weng Y et al (2011) X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469:428–431. doi:10.1038/nature09647

    Article  CAS  PubMed  Google Scholar 

  • Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26:1774–1777. doi:10.1200/JCO.2007.15.7438

    Article  PubMed  Google Scholar 

  • Orriss GL, Runswick MJ, Collinson IR et al (1996) The delta- and epsilon-subunits of bovine F1-ATPase interact to form a heterodimeric subcomplex. Biochem J 314(Pt 2):695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996. doi:10.1038/nrd2199

    Article  CAS  PubMed  Google Scholar 

  • Park SH, Das BB, Casagrande F et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783. doi:10.1038/nature11580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pechmann S, Frydman J (2013) Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nat Struct Mol Biol 20:237–243. doi:10.1038/nsmb.2466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Popot J-L, Althoff T, Bagnard D et al (2011) Amphipols from A to Z. Annu Rev Biophys 40:379–408. doi:10.1146/annurev-biophys-042910-155219

    Article  CAS  PubMed  Google Scholar 

  • Rogé J, Betton J-M (2005) Use of pIVEX plasmids for protein overproduction in Escherichia coli. Microb Cell Fact 4:18. doi:10.1186/1475-2859-4-18

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarkar CA, Dodevski I, Kenig M et al (2008) From the cover: directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci U S A 105:14808–14813. doi:10.1073/pnas.0803103105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sevastsyanovich YR, Alfasi SN, Cole JA (2010) Sense and nonsense from a systems biology approach to microbial recombinant protein production. Biotechnol Appl Biochem 55:9–28. doi:10.1042/BA20090174

    Article  CAS  PubMed  Google Scholar 

  • Shaw AZ, Miroux B (2003) A general approach for heterologous membrane protein expression in Escherichia coli: the uncoupling protein, UCP1, as an example. Methods Mol Biol 228:23–35. doi:10.1385/1-59259-400-X:23

    CAS  PubMed  Google Scholar 

  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Wach A, Thinès-Sempoux D, Goffeau A (1993) Proliferation of intracellular structures upon overexpression of the PMA2 ATPase in Saccharomyces cerevisiae. J Biol Chem 268:19744–19752

    CAS  PubMed  Google Scholar 

  • Tate CG (2012) A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem Sci 37:343–352. doi:10.1016/j.tibs.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  • Tifrea DF, Sun G, Pal S et al (2011) Amphipols stabilize the Chlamydia major outer membrane protein and enhance its protective ability as a vaccine. Vaccine 29:4623–4631. doi:10.1016/j.vaccine.2011.04.065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Von Meyenburg K, Jørgensen BB, Van Deurs B (1984) Physiological and morphological effects of overproduction of membrane-bound ATP synthase in Escherichia coli K-12. EMBO J 3:1791–1797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner S, Baars L, Ytterberg AJ et al (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550. doi:10.1074/mcp.M600431-MCP200

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Klepsch MM, Schlegel S et al (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376. doi:10.1073/pnas.0804090105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker J, Miroux B (1999) Selection of Escherichia coli hosts that are optimized for the overexpression of proteins. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology (MIMB2), 2nd edn. ASM, Washington DC

    Google Scholar 

  • Walse B, Dufe VT, Svensson B et al (2008) The structures of human dihydroorotate dehydrogenase with and without inhibitor reveal conformational flexibility in the inhibitor and substrate binding sites. Biochemistry 47:8929–8936. doi:10.1021/bi8003318

    Article  CAS  PubMed  Google Scholar 

  • Warschawski DE (2013) Membrane proteins of known structure determined by NMR. http://www.drorlist.com/nmr/MPNMR.html. Accessed 30 Aug 2013

  • Way M, Pope B, Gooch J et al (1990) Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J 9:4103–4109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiner JH, Lemire BD, Elmes ML et al (1984) Overproduction of fumarate reductase in Escherichia coli induces a novel intracellular lipid-protein organelle. J Bacteriol 158:590–596

    CAS  PubMed Central  PubMed  Google Scholar 

  • White S (2013) Membrane proteins of known 3D structure determined by X-ray crystallography. http://blanco.biomol.uci.edu/mpstruc/. Accessed 30 Aug 2013

  • Wilkison WO, Walsh JP, Corless JM, Bell RM (1986) Crystalline arrays of the Escherichia coli sn-glycerol-3-phosphate acyltransferase, an integral membrane protein. J Biol Chem 261:9951–9958

    CAS  PubMed  Google Scholar 

  • Wright R, Basson M, D’Ari L, Rine J (1988) Increased amounts of HMG-CoA reductase induce “karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J Cell Biol 107:101–114

    Article  CAS  PubMed  Google Scholar 

  • Zoonens M, Miroux B (2010) Expression of membrane proteins at the Escherichia coli membrane for structural studies. Methods Mol Biol 601:49–66. doi:10.1007/978-1-60761-344-2_4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence National de La Recherche (ANR MIT-2M, 2010 BLAN1518), the Centre National de la Recherche Scientifique, and by the “Initiative d’Excellence” programme from the French State (Grant “DYNAMO”, ANR-11-LABEX-0011–01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Miroux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hattab, G. et al. (2014). Membrane Protein Production in Escherichia coli: Overview and Protocols. In: Mus-Veteau, I. (eds) Membrane Proteins Production for Structural Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0662-8_4

Download citation

Publish with us

Policies and ethics