Skip to main content

Antioxidant Interventions in Neuropsychiatric Disorders

  • Chapter
  • First Online:
Studies on Psychiatric Disorders

Abstract

Oxidative stress and free radicals have been implicated in the pathophysiology of a number of neuropsychiatric disorders. Both genetic and nongenetic factors have been shown to cause increased cellular levels of reactive oxygen species in subjects with schizophrenia or mood disorder. The above factors are also known to trigger oxidative cellular damage to lipids, proteins, and DNA, which leads to abnormal neural growth and differentiation. In addition, recent evidence suggest that novel therapeutic strategies such as supplementation with antioxidants, ω3 fatty acids, or combination of both might improve the neuroplasticity and can be effective for long-term treatment management of neuropsychiatric disorders. This chapter presents an overview of the recent findings on the potential treatment strategies using antioxidants in schizophrenia and mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1O2 :

Singlet oxygen

AA:

Arachidonic acid

BDNF:

Brain-derived neurotrophic factor

BPRS:

Brief psychiatric rating scale

CAD:

Coronary artery disease

CAT:

Catalase

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

ethyl-EPA:

Ethyl-eicosapentaenoic acid

GPx:

Glutathione peroxidase

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

IL-1:

Interleukin-1

IL-6:

Interleukin-6

LTB4 :

Leukotriene B4

MADRS:

Montgomery–Asberg Depression Rating Scale

MDD:

Major depressive disorder

NAC:

N-Acetylcysteine

NGF:

Nerve growth factor

NO‾:

Nitric oxide

NO‾2 :

Nitrate

NO‾3 :

Nitrite

NO•:

Nitric oxide

O2 :

Superoxide anion

OH•:

Hydroxyl

PANSS:

Positive and Negative Syndrome Scale

PGE2 :

Prostaglandin E2

PUFAs:

Polyunsaturated fatty acids

RBC:

Red blood cell

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TAS:

Total antioxidant status

TD:

Tardive dyskinesia

TNF-α:

Tumor necrosis factor-α

References

  • Abdalla DS, Manteiro HP, Olivera JA, Bechara EJ (1986) Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic depressive patients. Clin Chem 32:805–807

    CAS  PubMed  Google Scholar 

  • Adler LA, Peselow E, Rotrosen J, Duncan E, Lee M, Rosenthal M, Angrist B (1993) Vitamin E treatment of tardive dyskinesia. Am J Psychiatry 150:1405–1407

    CAS  PubMed  Google Scholar 

  • Amminger GP, Schäfer MR, Papageorgiou K, Klier CM, Cotton SM, Harrigan SM, Mackinnon A, McGorry PD, Berger GE (2010) Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 67:146–154

    CAS  PubMed  Google Scholar 

  • Andreazza AC, Kauer-Sant’anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144

    CAS  PubMed  Google Scholar 

  • Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, Walz JC, Bond DJ, Goncalves CA, Young LT, Yatham LN (2009) 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci 34:263–271

    PubMed Central  PubMed  Google Scholar 

  • Aruoma OI, Halliwell B, Hoey BM et al (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597

    CAS  PubMed  Google Scholar 

  • Arvindakshan M, Sitasawad S, Debsikdar V, Ghate M, Evans D, Horrobin DF, Bennett C, Ranjekar PK, Mahadik SP (2003) Essential polyunsaturated fatty acid and lipid peroxide levels in never-medicated and medicated schizophrenia patients. Biol Psychiatry 53:56–64

    CAS  PubMed  Google Scholar 

  • Balanza-Martinez V, Fries GR, Colpo GD, Silveira PP, Portella AK, Tabares-Seisdedos R, Kapczinski F (2011) Therapeutic use of omega-3 fatty acids in bipolar disorder. Expert Rev Neurother 11:1029–1047

    PubMed  Google Scholar 

  • Belmaker RH (2004) Bipolar disorder. N Engl J Med 351:476–486

    CAS  PubMed  Google Scholar 

  • Ben-Shachar D, Laifenfeld D (2004) Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 59:273–296

    CAS  PubMed  Google Scholar 

  • Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S, Little J, Conus P, Cuenod M, Do KQ, Bush AI (2008a) N-acetyl cysteine as a glutathione precursor for schizophrenia–a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 64:361–368

    CAS  PubMed  Google Scholar 

  • Berk M, Ng F, Dean O, Dodd S, Bush AI (2008b) Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci 29:346–351

    CAS  PubMed  Google Scholar 

  • Berk M, Dean O, Cotton SM, Gam CS, Kapczinski F, Fernandes BS, Kohlmann K, Jeavons S, Hewitt K, Allwang C, Cobb H, Bush AI, Schapkaitz I, Dodd S, Malhi GS (2011) The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord 135:389–394

    CAS  PubMed  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni S (2007) Protective effect of rutin, a polyphenolic flavonoid against haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes. Fundam Clin Pharmacol 21:521–529

    CAS  PubMed  Google Scholar 

  • Bloch MH, Hannestad J (2011) Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry. doi:10.1038/mp.2011.100 [Epub ahead of print]

    Google Scholar 

  • Bošković M, Vovk T, Plesnicar BK, Grabnar I (2011) Oxidative stress in schizophrenia. Curr Neuropharmacol 9:301–312

    PubMed Central  PubMed  Google Scholar 

  • Brown K, Reid A, White T, Henderson T, Hukin S, Johnstone C, Glen A (1998) Vitamin E, lipids, and lipid peroxidation products in tardive dyskinesia. Biol Psychiatry 43:863–867

    CAS  PubMed  Google Scholar 

  • Bubber P, Tang J, Haroutunian V, Xu H, Davis KL, Blass JP, Gibson GE (2004) Mitochondrial enzymes in schizophrenia. J Mol Neurosci 24(2):315–321

    CAS  PubMed  Google Scholar 

  • Bucher HC, Hengstler P, Schindler C et al (2002) N-3 polyunsaturated fatty acids in coronary heart disease: a meta-analysis of randomized controlled trials. Am J Med 112:298–304

    CAS  PubMed  Google Scholar 

  • Bulut M, Savas HA, Altindag A, Virit O, Dalkilic A (2009) Beneficial effects of N-acetylcysteine in treatment resistant schizophrenia. World J Biol Psychiatry 10:626–628

    PubMed  Google Scholar 

  • Calder PC (1998) Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz J Med Biol Res 31:467–490

    CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Carlsson ML (1999) Neurotransmitter interactions in schizophrenia–therapeutic implications. Biol Psychiatry 46:1388–1395

    CAS  PubMed  Google Scholar 

  • Chen CJ, Liao SL (2003) Neurotrophic and neurotoxic effects of zinc on neonatal cortical neurons. Neurochem Int 42:471–479

    CAS  PubMed  Google Scholar 

  • Cichy A, Sowa-Kucma M, Legutko B, Pomierny-Chamiolo L, Siwek A, Piotrowska A, Szewczyk B, Poleszak E, Pilc A, Nowak G (2009) Zinc-induced adaptive changes in NMDA/glutamatergic and serotonergic receptors. Pharmacol Rep 61:1184–1191

    CAS  PubMed  Google Scholar 

  • Clayton EH, Hanstock TL, Hirneth SJ, Kable CJ, Garg ML, Hazell PL (2009) Reduced mania and depression in juvenile bipolar disorder associated with long-chain omega-3 polyunsaturated fatty acid supplementation. Eur J Clin Nutr 63:1037–1040

    CAS  PubMed  Google Scholar 

  • Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71:171S–175S

    CAS  PubMed  Google Scholar 

  • Corrigan FM, Van Rhijn AG, Mackay AV, Skinner ER, Horrobin DF (1993) Vitamin E treatment of tardive dyskinesia (letter). Am J Psychiatry 150:991–992

    CAS  PubMed  Google Scholar 

  • Craddock RM, Lockstone HE, Rider DA, Wayland MT, Harris LJ, McKenna PJ, Bahn S (2007) Altered T-cell function in schizophrenia: a cellular model to investigate molecular disease mechanisms. PLoS One 2:e692

    PubMed Central  PubMed  Google Scholar 

  • Dakhale GN, Khanzode SD, Khanzode SS, Saoji A (2005) Supplementation of vitamin C with atypical antipsychotics reduces oxidative stress and improves the outcome of schizophrenia. Psychopharmacology (Berl) 182:494–498

    CAS  Google Scholar 

  • Dean OM, van den Buuse M, Berk M, Copolov DL, Mavros C, Bush AI (2011) N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and D-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder. Neurosci Lett 499:149–153

    CAS  PubMed  Google Scholar 

  • Dietrich-Muszalska A, Olas B (2009) Inhibitory effects of polyphenol compounds on lipid peroxidation caused by antipsychotics (haloperidol and amisulpride) in human plasma in vitro. World J Biol Psychiatry 11:276–281

    Google Scholar 

  • Dodd S, Dean O, Copolov DL, Malhi GS, Berk M (2008) N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther 8:1955–1962

    CAS  PubMed  Google Scholar 

  • Edwards R, Peet M, Shay J, Horrobin DF (1998) Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 48:149–155

    CAS  PubMed  Google Scholar 

  • Elkashef AM, Wyatt RJ (1999) Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr Bull 25:731–740

    CAS  PubMed  Google Scholar 

  • Emsley R, Oosthuizen P, van Rensburg SJ (2003) Clinical potential of omega-3 fatty acids in the treatment of schizophrenia. CNS Drugs 17:1081–1091

    CAS  PubMed  Google Scholar 

  • Franco JL, Posser T, Brocardo PS, Trevisan R, Uliano-Silva M, Gabilan NH, Santos AR, Leal RB, Rodrigues AL, Farina M, Dafre AL (2008) Involvement of glutathione, ERK1/2 phosphorylation and BDNF expression in the antidepressant-like effect of zinc in rats. Behav Brain Res 188:316–323

    CAS  PubMed  Google Scholar 

  • Frangou S, Lewis M, McCrone P (2006) Efficacy of ethyl-eicosapentaenoic acid in bipolar depression: randomised double-blind placebo-controlled study. Br J Psychiatry 188:46–50

    PubMed  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    CAS  PubMed  Google Scholar 

  • Galecki P, Szemraj J, Bienkiewicz M, Florkowski A, Galecka E (2009) Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol Rep 61:436–447

    Google Scholar 

  • Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–130

    CAS  PubMed  Google Scholar 

  • Goff DC, Tsai G, Beal MF, Coyle JT (1995) Tardive dyskinesia and substrates of energy metabolism in CSF. Am J Psychiatry 152:1730–1736

    CAS  PubMed  Google Scholar 

  • Golse B, Debray-Ritzen P, Puget K, Michelson AM (1977) Analysis of platelet superoxide dismutase 1 in the development of childhood psychoses. Nouv Presse Med 6:2449

    CAS  PubMed  Google Scholar 

  • Hedelin M, Löf M, Olsson M, Lewander T, Nilsson B, Hultman CM, Weiderpass E (2010) Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33,000 women from the general population. BMC Psychiatry 10:38

    PubMed Central  PubMed  Google Scholar 

  • Herken H, Uz E, Ozyurt H, Akyol O (2001) Red blood cell nitric oxide levels in patients with schizophrenia. Schizophr Res 52:289–290

    CAS  PubMed  Google Scholar 

  • Hibbeln JR (1998) Fish consumption and major depression. Lancet 351:1213

    CAS  PubMed  Google Scholar 

  • Hibbeln JR, Salem N (1995) Dietary polyunsaturated fatty acid and depression: when cholesterol does not satisfy. Am J Clin Nutr 62:1–9

    CAS  PubMed  Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    CAS  PubMed  Google Scholar 

  • James MJ, Gibson RA, Cleland LG (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr 71:343S–348S

    CAS  PubMed  Google Scholar 

  • Kendler KS (2003) The genetics of schizophrenia: chromosomal deletions, attentional disturbances, and spectrum boundaries. Am J Psychiatry 160:1549–1553

    PubMed  Google Scholar 

  • Kodydkova J, Vavrova L, Zeman M, Jirak R, Macasek J, Stankova B, Tvrzicka E, Zak A (2009) Antioxidative enzymes and increased oxidative stress in depressive women. Clin Biochem 42:1368–1374

    CAS  PubMed  Google Scholar 

  • Kornhuber J, Weller M (1994) Current status of biochemical hypotheses in the pathogenesis of schizophrenia. Nervenarzt 65:741–754

    CAS  PubMed  Google Scholar 

  • Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20:171–175

    CAS  PubMed  Google Scholar 

  • Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293:2528–2530

    CAS  PubMed  Google Scholar 

  • Li XF, Zheng YL, Xiu MH, da Chen C, Kosten TR, Zhang XY (2011) Reduced plasma total antioxidant status in first-episode drug-naive patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 35:1064–1067

    CAS  PubMed  Google Scholar 

  • Linscheer WG, Vergroesen AJ (1988) Lipids. In: Shils ME, Young VR (eds) Modern nutrition in health and disease. Lea and Febiger, Philadelphia, pp 72–107

    Google Scholar 

  • Maes M, D’Haese PC, Scharpé S, D’Hondt P, Cosyns P, De Broe ME (1994) Hypozincemia in depression. J Affect Disord 31:135–140

    CAS  PubMed  Google Scholar 

  • Maes M, Smith R, Christophe A, Cosyns P, Desnyder R, Meltzer HY (1996) Fatty acid composition in major depression: decreased ω3 fractions in cholesteryl esters and increased c20:4ω6/c20:5ω3 ratio in cholesteryl esters and phospholipids. J Affect Disord 38:35–46

    CAS  PubMed  Google Scholar 

  • Maes M, Christophe A, Bosmans E, Lin A, Neels H (2000) In humans, serum polyunsaturated fatty acid levels predict the response of proinflammatory cytokines to psychologic stress. Biol Psychiatry 47:910–920

    CAS  PubMed  Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35:676–692

    CAS  PubMed  Google Scholar 

  • Magalhaes PV, Dean OM, Bush AI, Copolov DL, Malhi GS, Kohlmann K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Berk M (2011) N-acetylcysteine for major depressive episodes in bipolar disorder. Rev Bras Psiquiatr 33:374–378

    PubMed  Google Scholar 

  • Mahadik SP, Yao JK (2006) Phospholipids in schizophrenia. In: Lieberman JA, Stroup TS, Perkins DO (eds) Textbook of schizophrenia. The American Psychiatric Publishing, Inc., Washington, DC, pp 117–135

    Google Scholar 

  • Mahadik SP, Evans D, Lal H (2001) Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 25:463–493

    CAS  PubMed  Google Scholar 

  • Maldonado MD, Reiter RJ, Perez-San-Gregorio MA (2009) Melatonin as a potential therapeutic agent in psychiatric illness. Hum Psychopharmacol 24:391–400

    CAS  PubMed  Google Scholar 

  • Marangell LB, Martinez JM, Zboyan HA, Kertz B, Kim HF, Puryear LJ (2003) A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am J Psychiatry 160:996–998

    PubMed  Google Scholar 

  • Marazziti D, Baroni S, Picchetti M, Landi P, Silvestri S, Vatteroni E, Catena Dell’Osso M (2012) Psychiatric disorders and mitochondrial dysfunctions. Eur Rev Med Pharmacol Sci 16:270–275

    CAS  PubMed  Google Scholar 

  • Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28:525–542

    CAS  PubMed  Google Scholar 

  • Martins JG, Bentsen H, Puri BK (2012) Eicosapentaenoic acid appears to be the key omega-3 fatty acid component associated with efficacy in major depressive disorder: a critique of Bloch and Hannestad and updated meta-analysis. Mol Psychiatry. doi:10.1038/mp.2012.25

    Google Scholar 

  • McCreadie RG, MacDonald E, Wiles D, Campbell G, Paterson JR (1995) The Nithsdale Schizophrenia Surveys. XIV: plasma lipid peroxide and serum vitamin E levels in patients with and without tardive dyskinesia, and in normal subjects. Br J Psychiatry 167:610–617

    CAS  PubMed  Google Scholar 

  • McLoughlin IJ, Hodge JS (1990) Zinc in depressive disorder. Acta Psychiatr Scand 82:451–453

    CAS  PubMed  Google Scholar 

  • McNamara RK (2013) Long-chain omega-3 fatty acid deficiency in mood disorders: rationale for treatment and prevention. Curr Drug Discov Technol 10:233–244

    Google Scholar 

  • Merikangas KR, Ames M, Cui L, Stang PE, Ustun TB, Von Korff M, Kessler RC (2007) The impact of comorbidity of mental and physical conditions on role disability in the US adult household population. Arch Gen Psychiatry 64:1180–1188

    PubMed Central  PubMed  Google Scholar 

  • Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    CAS  PubMed  Google Scholar 

  • Nowak G, Legutko B, Szewczyk B, Papp M, Sanak M, Pilc A (2004) Zinc treatment induces cortical brain-derived neurotrophic factor gene expression. Eur J Pharmacol 492:57–59

    CAS  PubMed  Google Scholar 

  • O’Keefe JH, Harris WS (2000) From inuit to implementation: omega-3 fatty acids come of age. Mayo Clin Proc 75:607–614

    PubMed  Google Scholar 

  • Ortiz GG, Benitez-King GA, Rosales-Corral SA, Pacheco-Moises FP, Velazquez-Brizuela IE (2008) Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders. Curr Neuropharmacol 6:203–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osher Y, Bersudsky Y, Belmaker RH (2005) Omega-3 eicosapentaenoic acid in bipolar depression: report of a small open-label study. J Clin Psychiatry 66:726–729

    CAS  PubMed  Google Scholar 

  • Othmen L, Mechri A, Fendri C, Bost M, Chazot G, Gaha L, Kerkeni A (2008) Altered antioxidant defense system in clinically stable patients with schizophrenia and their unaffected siblings. Prog Neuropsychopharmacol Biol Psychiatry 32:155–159

    PubMed  Google Scholar 

  • Ozyurt B, Ozyrut H, Akpolat N, Erdogan H, Sarsilmaz M (2007) Oxidative stress in prefrontal cortex of ret exposed to MK-801 and protective effects of CAPE. Prog Neuropsychopharmacol Biol Psychiatry 31:832–838

    CAS  PubMed  Google Scholar 

  • Pearce BD (2001) Schizophrenia and viral infection during neurodevelopment: a focus on mechanisms. Mol Psychiatry 6:634–646

    CAS  PubMed  Google Scholar 

  • Peet M, Horrobin DF (2002) A dose-ranging study of the effects of ethyl-eicopentaenoic acid in patients with on-going depression in spite of apparently adequate treatment with standard drugs. Arch Gen Psychiatry 59:913–919

    CAS  PubMed  Google Scholar 

  • Peet M, Laugharne J, Rangarajan N, Reynolds GP (1993) Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol 8:151–153

    CAS  PubMed  Google Scholar 

  • Peet M, Murphy B, Shay J, Horrobin DF (1998) Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 43:315–319

    CAS  PubMed  Google Scholar 

  • Perica MM, Delas I (2011) Essential fatty acids and psychiatric disorders. Nutr Clin Pract 26:409–425

    PubMed  Google Scholar 

  • Pillai A (2008) Brain-derived neurotropic factor/TrkB signaling in the pathogenesis and novel pharmacotherapy of schizophrenia. Neurosignals 16:183–193

    CAS  PubMed  Google Scholar 

  • Post RM, Leverich GS, Altshuler LL et al (2003) An overview of recent findings of the Stanley Foundation Bipolar Network (Part I). Bipolar Disord 5:310–319

    PubMed  Google Scholar 

  • Raffa M, Atig F, Mhalla A, Kerkeni A, Mechri A (2011) Decreased glutathione levels and impaired antioxidant enzyme activities in drug-naïve first-episode schizophrenic patients. BMC Psychiatry 11:124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121:109–122

    CAS  PubMed  Google Scholar 

  • Rao A, Rao L (2004) Lycopene and human health. Curr Top Nutraceut Res 2:127–136

    CAS  Google Scholar 

  • Reddy R, Sahebarao MP, Mukherjee S, Murthy JN (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients. Biol Psychiatry 30:409–412

    CAS  PubMed  Google Scholar 

  • Ross BM, Seguin J, Sieswerda LE (2007) Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis 6:21

    PubMed Central  PubMed  Google Scholar 

  • Sarris J, Mischoulon D, Schweitzer I (2011) Adjunctive nutraceuticals with standard pharmacotherapies in bipolar disorder: a systematic review of clinical trials. Bipolar Disord 13:454–465

    CAS  PubMed  Google Scholar 

  • Savas HA, Gergerlioglu HS, Armutcu F, Herken H, Yilmaz HR, Kocoglu E, Selek S, Tutkun H, Zoroglu SS, Akyol O (2006) Elevated serum nitric oxide and superoxide dismutase in euthymic bipolar patients: impact of past episodes. World J Biol Psychiatry 7:51–55

    PubMed  Google Scholar 

  • Seko C, Ninno N, Nakamura K (1997) Relation between fatty acid composition in blood and depressive symptoms in the elderly. Jpn J Hyg 52:330

    Google Scholar 

  • Shriqui CL, Bradwejn J, Annable L, Jones BD (1992) Vitamin E in the treatment of tardive dyskinesia: a double-blind placebo-controlled study. Am J Psychiatry 149:391–393

    CAS  PubMed  Google Scholar 

  • Singh V, Singh SP, Chan K (2010) Review and meta-analysis of usage of ginkgo as an adjunct therapy in chronic schizophrenia. Int J Neuropsychopharmacol 13:257–271

    CAS  PubMed  Google Scholar 

  • Skaper SD, Floreani M, Negro A, Facci L, Giusti P (1998) Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: selective involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway. J Neurochem 70:1859–1868

    CAS  PubMed  Google Scholar 

  • Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35:298–306

    CAS  PubMed  Google Scholar 

  • Sowa-Kucma M, Legutko B, Szewczyk B, Novak K, Znojek P, Poleszak E, Papp M, Pilc A, Nowak G (2008) Antidepressant-like activity of zinc: further behavioral and molecular evidence. J Neural Transm 115:1621–1628

    CAS  PubMed  Google Scholar 

  • Soyland E, Lea T, Sandstand B, Drevon A (1994) Dietary supplementation with very long-chain n-3 fatty acids in man decreases expression of the interleukin-2 receptor (CD25) on mitogen-stimulated lymphocytes from patients with inflammatory skin disease. Eur J Clin Invest 24:236–242

    CAS  PubMed  Google Scholar 

  • Stoklasova A, Zapletalek M, Kudrnova K, Randova Z (1986) Glutathione peroxidase activity in the blood in chronic schizophrenia. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl 29:103–108

    CAS  PubMed  Google Scholar 

  • Sublette ME, Ellis SP, Geant AL, Mann JJ (2011) Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 72:1577–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suboticanec K, Folnegovic V, Korbar M, Mestrovic B, Buzina R (1990) Vitamin C status in chronic schizophrenia. Biol Psychiatry 28:959–966

    CAS  PubMed  Google Scholar 

  • Surapaneni K (2007) Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in schizophrenic patients. J Clin Diagn Res 1:39–44

    CAS  Google Scholar 

  • Szewczyk B, Kubera M, Nowak G (2011) The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:693–701

    CAS  PubMed  Google Scholar 

  • Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–44

    CAS  PubMed  Google Scholar 

  • Taneli F, Pirildar S, Akdeniz F, Uyanik BS, Ari Z (2004) Serum nitric oxide metabolite levels and the effect of antipsychotic therapy in schizophrenia. Arch Med Res 35:401–405

    CAS  PubMed  Google Scholar 

  • Tashiro T, Yamamori H, Takagi K, Hayashi N, Furukawa K, Nakajima N (1998) N-3 versus n-6 polyunsaturated fatty acids in critical illness. Nutrition 14:551–553

    CAS  PubMed  Google Scholar 

  • Thome J, Foley P, Riederer P (1998) Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. Review article. J Neural Transm 105:85–100

    CAS  PubMed  Google Scholar 

  • Whatley SA, Curti D, Das Gupta F, Ferrier IN, Jones S, Taylor C, Marchbanks RM (1998) Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Mol Psychiatry 3:227–237

    CAS  PubMed  Google Scholar 

  • Yao JK, Keshavan MS (2011) Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal 15:2011–2035

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao JK, Reddy R, McElhinny LG, van Kammen DP (1998a) Reduced status of plasma total antioxidant capacity in schizophrenia. Schizophr Res 32:1–8

    CAS  PubMed  Google Scholar 

  • Yao JK, Reddy R, McElhinny LG, van Kammen DP (1998b) Effect of haloperidol on antioxidant defense system enzymes in schizophrenia. J Psychiatr Res 32:385–391

    CAS  PubMed  Google Scholar 

  • Yao JK, Reddy R, van Kammen DP (1998c) Reduced level of plasma antioxidant uric acid in schizophrenia. Psychiatry Res 80:29–39

    CAS  PubMed  Google Scholar 

  • Yao JK, Reddy R, van Kammen DP (1999) Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatry 45:1512–1515

    CAS  PubMed  Google Scholar 

  • Yao JK, Reddy R, van Kammen DP (2000) Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatry Res 97:137–151

    CAS  PubMed  Google Scholar 

  • Yao JK, Leonard S, Reddy RD (2004) Increased nitric oxide radicals in postmortem brain from patients with schizophrenia. Schizophr Bull 30:923–934

    PubMed  Google Scholar 

  • Young J, Wahle K, Boyle S (2007) Cytoprotective effects of phenolic antioxidants and essential fatty acids in human blood monocyte and neuroblastoma cell lines: surrogates for neurological damage in vivo. Prostaglandins Leukot Essent Fatty Acids 78:45–59

    PubMed  Google Scholar 

  • Zhang ZX, Yang XG, Xia YM, Chen XS (1998) Progress in the study of mammalian selenoprotein. Sheng Li Ke Xue Jin Zhan 29:29–34

    PubMed  Google Scholar 

  • Zhang M, Zhao Z, He L, Wan C (2010) A meta-analysis of oxidative stress markers in schizophrenia. Sci China Life Sci 53:112–124

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported in part by the grants from the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory R&D [Merit Reviews and Senior Research Career Scientist Award (JKY)], VA Pittsburgh Healthcare System, National Institute of Health [MH58141 (JKY) and MH087857 (AP)], and American Heart Association (JKY). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The contents of this article do not represent the views of the Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey K. Yao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pillai, A., Yao, J.K. (2015). Antioxidant Interventions in Neuropsychiatric Disorders. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_25

Download citation

Publish with us

Policies and ethics