Skip to main content

The Kynurenine Pathway at the Interface Between Neuroinflammation, Oxidative Stress, and Neurochemical Disturbances: Emphasis in Schizophrenia

  • Chapter
  • First Online:
Studies on Psychiatric Disorders

Abstract

In recent years, the correlation between the kynurenine pathway (KP) metabolism, immune system activation, oxidative damage, and disorders of the CNS has been intensively explored. Recently, it has been postulated that KP could play a major role in both brain physiology and pathology, and this is due to the fact that this metabolic pathway contains at least two well-characterized neuroactive metabolites: quinolinic acid and kynurenic acid (KYNA). Other metabolites from the same pathway have shown to possess pro- and antioxidant properties. Moreover, KP includes enzymes that are modulated by inflammatory factors and free radicals. Altogether, this evidence suggests that KP metabolites could actively participate in a wide range of physiological and pathological events (Carpenedo et al., Eur J Neurosci 13:2141–2147, 2001; Leipnitz et al., Neurochem Int 50:83–94, 2007; Rassoulpour et al., J Neurochem 93:762–765, 2005; Schwarcz et al. 2010). Therefore, a cerebral unbalance oriented to generate some of these metabolites directly impacts on glutamatergic, dopaminergic, and cholinergic transmissions and is often associated with neurological, neurodegenerative, and psychiatric disorders, such as schizophrenia, which is known to be a cognitive decline associated with altered levels of KYNA, one of the recently recognized metabolic targets to handle this disorder.

Rafael Lugo-Huitrón: Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. CONACyT scholarship holder 262378

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-HANA:

3-hydroxyanthranilic acid

3‑HAO:

3-hydroxyanthranilic acid 3, 4-dioxygenase

3-HK:

3-hydroxykynurenine

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

BBB:

Blood brain barrier

CNS:

Central nervous system

DA:

Dopamine

GABA:

Gamma-aminobutyric acid

Glu:

Glutamate

H2O2 :

Hydrogen peroxide

HO-1:

Heme oxygenase-1

IDO:

Indoleamine 2,3-dioxygenase

KATs:

Kynurenine aminotransferases

KMO:

Kynurenine 3-monooxygenase

KP:

Kynurenine pathway

KYN:

Kynurenine

KYNA:

Kynurenic acid

LDL:

Low-density lipoprotein

MAPKs:

Mitogen-activated protein kinases

NF-κB:

Factor nuclear factor-kappa B

NOS:

Nitric oxide synthase

PFC:

Prefrontal cortex

QUIN:

Quinolinic acid

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SP:

Schizophrenia

TDO:

Tryptophan 2,3-dioxygenase

Trp:

Tryptophan

XA:

Xanthurenic acid

α7nAChR:

α7 nicotine acetylcholine receptor

References

  • Abe S, Hu W, Ishibashi H, Hasumi K, Yamaguchi H (2004) Augmented inhibition of Candida albicans growth by murine neutrophils in the presence of a tryptophan metabolite, picolinic acid. J Infect Chemother 10:181–184

    CAS  PubMed  Google Scholar 

  • Aggett PJ, Fenwick PK, Kirk H (1989) An in vitro study of the effect of picolinic acid on metal translocation across lipid bilayers. J Nutr 119:1432–1437

    CAS  PubMed  Google Scholar 

  • Akagbosu CO, Evans GC, Gulick D, Suckow RF, Bucci DJ (2012) Exposure to kynurenic acid during adolescence produces memory deficits in adulthood. Schizophr Bull 38:769–778

    PubMed Central  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648

    CAS  PubMed  Google Scholar 

  • Amori L, Guidetti P, Pellicciari R, Kajii Y, Schwarcz R (2009) On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo. J Neurochem 109:316–325

    CAS  PubMed Central  PubMed  Google Scholar 

  • Babcock TA, Carlin JM (2000) Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 12:588–594

    CAS  PubMed  Google Scholar 

  • Backhaus C, Rahman H, Scheffler S, Laatsch H, Hardeland R (2008) No scavenging by 3-hydroxyanthranilic acid and 3-hydroxykynurenine: N-nitrosation leads via oxadiazoles to o-quinone diazides. Nitric Oxide 19(3):237–244

    Google Scholar 

  • Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH (2009) Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int J Biochem Cell Biol 41:467–471

    CAS  PubMed  Google Scholar 

  • Baran H, Schwarcz R (1990) Presence of 3-hydroxyanthranilic acid in rat tissues and evidence for its production from anthranilic acid in the brain. J Neurochem 55:738–744

    CAS  PubMed  Google Scholar 

  • Beal MF, Matson WR, Swartz KJ, Gamache PH, Bird ED (1990) Kynurenine pathway measurements in Huntington’s disease striatum: evidence for reduced formation of kynurenic acid. J Neurochem 55:1327–1339

    CAS  PubMed  Google Scholar 

  • Behan WM, McDonald M, Darlington LG, Stone TW (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl. Br J Pharmacol 128:1754–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg D, Youdim MB, Riederer P (2004) Redox imbalance. Cell Tissue Res 318:201–213

    PubMed  Google Scholar 

  • Bosco MC, Rapisarda A, Massazza S, Melillo G, Young H, Varesio L (2000) The tryptophan catabolite picolinic acid selectively induces the chemokines macrophage inflammatory protein-1 alpha and -1 beta in macrophages. J Immunol 164:3283–3291

    CAS  PubMed  Google Scholar 

  • Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M, Babulas VP, Susser ES (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61:774–780

    PubMed  Google Scholar 

  • Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58:1032–1037

    CAS  PubMed  Google Scholar 

  • Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147

    CAS  PubMed  Google Scholar 

  • Chao CC, Hu S, Gekker G, Lokensgard JR, Heyes MP, Peterson PK (2000) U50,488 protection against HIV-1-related neurotoxicity: involvement of quinolinic acid suppression. Neuropharmacology 39:150–160

    CAS  PubMed  Google Scholar 

  • Charconnet-Harding F, Dalgliesh CE, Neuberger A (1953) The relation between riboflavin and tryptophan metabolism, studied in the rat. Biochem J 53(4):513–521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy States. Int J Tryptophan Res 2:1–19

    PubMed Central  PubMed  Google Scholar 

  • Chess AC, Bucci DJ (2006) Increased concentration of cerebral kynurenic acid alters stimulus processing and conditioned responding. Behav Brain Res 170:326–332

    CAS  PubMed  Google Scholar 

  • Chess AC, Simoni MK, Alling TE, Bucci DJ (2007) Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 33:797–804

    PubMed Central  PubMed  Google Scholar 

  • Chess AC, Landers AM, Bucci DJ (2009) L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behav Brain Res 201:325–331

    CAS  PubMed  Google Scholar 

  • Chiarugi A, Meli E, Moroni F (2001) Similarities and differences in the neuronal death processes activated by 3OH‑kynurenine and quinolinic acid. J Neurochem 77:1310–1318

    CAS  PubMed  Google Scholar 

  • Christen S, Peterhans E, Stocker R (1990) Antioxidant activities of some tryptophan metabolites: possible implication for inflammatory diseases. Proc Natl Acad Sci U S A 87:2506–2510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christen S, Thomas SR, Garner B, Stocker R (1994) Inhibition by interferon-gamma of human mononuclear cell-mediated low density lipoprotein oxidation. Participation of tryptophan metabolism along the kynurenine pathway. J Clin Invest 93:2149–2158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coto-Montes A, Zsizsik BK, Hardeland R (2001) Kynurenic acid- not only an antioxidant: strong prooxidative interactions between kynurenic and δ-aminolevulinic acids under light exposure. In: Hardeland R (ed) Actions and redox properties of melatonin and other aromatic amino acid metabolites. Cuvillier, Göttingen, pp 148–155

    Google Scholar 

  • Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012:646354

    PubMed Central  PubMed  Google Scholar 

  • Dai W, Gupta SL (1990) Regulation of indoleamine 2,3-dioxygenase gene expression in human fibroblasts by interferon-gamma. Upstream control region discriminates between interferon-gamma and interferon-alpha. J Biol Chem 265:19871–19877

    CAS  PubMed  Google Scholar 

  • Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729

    CAS  PubMed  Google Scholar 

  • Dickerson F, Boronow J, Stallings C, Origoni A, Yolken R (2007) Toxoplasma gondii in individuals with schizophrenia: association with clinical and demographic factors and with mortality. Schizophr Bull 33:737–740

    PubMed Central  PubMed  Google Scholar 

  • Dihné M, Block F, Korr H, Töpper R (2001) Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury. Brain Res 902:178–189

    PubMed  Google Scholar 

  • DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM et al (2010) Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci 115:89–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dykens JA, Sullivan SG, Stern A (1989) Glucose metabolism and hemoglobin reactivity in human red blood cells exposed to the tryptophan metabolites 3-hydroxyanthranilate, quinolinate and picolinate. Biochem Pharmacol 38(10):1555–1562

    Google Scholar 

  • Dykens JA, Sullivan SG, Stern A (1987) Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem Pharmacol 36:211–217

    CAS  PubMed  Google Scholar 

  • Eastman CL, Guilarte TR (1990) The role of hydrogen peroxide in the in vitro cytotoxicity of 3-hydroxykynurenine. Neurochem Res 15:1101–1107

    CAS  PubMed  Google Scholar 

  • Emerit J, Edeas M, Bricaire F (2012) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Google Scholar 

  • Erhardt S, Blennow K, Nordin C, Skogh E, Lindström LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    CAS  PubMed  Google Scholar 

  • Erhardt S, Schwieler L, Emanuelsson C, Geyer M (2004) Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 56:255–260

    CAS  PubMed  Google Scholar 

  • Espey MG, Chernyshev ON, Reinhard JF Jr, Namboodiri MA, Colton CA (1997) Activated human microglia produce the excitotoxin quinolinic acid. Neuroreport 8:431–434

    CAS  PubMed  Google Scholar 

  • Fallarini S, Magliulo L, Paoletti T, de Lalla C, Lombardi G (2010) Expression of functional GPR35 in human iNKT cells. Biochem Biophys Res Commun 398:420–425

    CAS  PubMed  Google Scholar 

  • Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077

    CAS  PubMed  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    CAS  PubMed  Google Scholar 

  • Foster AC, Schwarcz R (1985) Characterization of quinolinic acid phosphoribosyltransferase in human blood and observations in Huntington’s disease. J Neurochem 45:199–205

    CAS  PubMed  Google Scholar 

  • Foster AC, White RJ, Schwarcz R (1986) Synthesis of quinolinic acid by 3-hydroxyanthranilic acid oxygenase in rat brain tissue in vitro. J Neurochem 47:23–30

    CAS  PubMed  Google Scholar 

  • Ganong AH, Cotman CW (1986) Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus. J Pharmacol Exp Ther 236:293–299

    CAS  PubMed  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–387

    CAS  PubMed  Google Scholar 

  • Gattaz WF, Abrahão AL, Foccacia R (2004) Childhood meningitis, brain maturation and the risk of psychosis. Eur Arch Psychiatry Clin Neurosci 254:23–26

    PubMed  Google Scholar 

  • Giles GI, Collins CA, Stone TW, Jacob C (2003) Electrochemical and in vitro evaluation of the redoxproperties of kynurenine species. Biochem Biophys Res Commun 300:719–724

    CAS  PubMed  Google Scholar 

  • Goldstein LE, Leopold MC, Huang X, Atwood CS, Saunders AJ, Hartshorn M, Lim JT, Faget KY, Muffat JA, Scarpa RC, Chylack LT Jr, Bowden EF, Tanzi RE, Bush AI (2000) 3‑Hydroxykynurenine and 3‑hydroxyanthranilic acid generate hydrogen peroxide and promote α‑crystallin cross-linking by metal ion reduction. Biochemistry 39:7266–7275

    CAS  PubMed  Google Scholar 

  • Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491

    CAS  PubMed  Google Scholar 

  • Grohmann U, Fallarino F, Bianchi R, Vacca C, Orabona C, Belladonna ML, Fioretti MC, Puccetti P (2003) Tryptophan catabolism in nonobese diabetic mice. Adv Exp Med Biol 527:47–54

    CAS  PubMed  Google Scholar 

  • Guidetti P, Schwarcz R (2003) 3-Hydroxykynurenine and quinolinate: pathogenic synergism in early grade Huntington’s disease? Adv Exp Med Biol 527:137–145

    CAS  PubMed  Google Scholar 

  • Guillemin GJ, Kerr SJ, Pemberton LA, Smith DG, Smythe GA, Armati PJ, Brew BJ (2001) IFN-beta1b induces kynurenine pathway metabolism in human macrophages: potential implications for multiple sclerosis treatment. J Interferon Cytokine Res 21:1097–1101

    CAS  PubMed  Google Scholar 

  • Guillemin GJ, Croitoru-Lamoury J, Dormont D, Armati PJ, Brew BJ (2003) Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Glia 41:371–381

    PubMed  Google Scholar 

  • Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49:15–23

    PubMed  Google Scholar 

  • Haber R, Bessette D, Hulihan-Giblin B, Durcan MJ, Goldman D (1993) Identification of tryptophan 2,3-dioxygenase RNA in rodent brain. J Neurochem 60:1159–1162

    CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  PubMed  Google Scholar 

  • Halova-Lajoie B, Brumas V, Fiallo MM, Berthon G (2006) Copper(II) interactions with non-steroidal anti-inflammatory agents. III–3-Methoxyanthranilic acid as a potential *OH-inactivating ligand: a quantitative investigation of its copper handling role in vivo. J Inorg Biochem 100:362–373

    CAS  PubMed  Google Scholar 

  • Hargreaves KM, Pardridge WM (1988) Neutral amino acid transport at the human blood-brain barrier. J Biol Chem 263:19392–19397

    CAS  PubMed  Google Scholar 

  • Hassanain HH, Chon SY, Gupta SL (1993) Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and -alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem 268:5077–5084

    CAS  PubMed  Google Scholar 

  • Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH, Lee J, Raz E (2007) 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci U S A 104:18619–18624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    CAS  PubMed  Google Scholar 

  • Heyes MP, Saito K, Jacobowitz D, Markey SP, Takikawa O, Vickers JH (1992) Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain. FASEB J 6:2977–2989

    CAS  PubMed  Google Scholar 

  • Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    CAS  PubMed  Google Scholar 

  • Hinze-Selch D, Däubener W, Eggert L, Erdag S, Stoltenberg R, Wilms S (2007) A controlled prospective study of toxoplasma gondii infection in individuals with schizophrenia: beyond seroprevalence. Schizophr Bull 33:782–788

    PubMed Central  PubMed  Google Scholar 

  • Hiraku Y, Inoue S, Oikawa S, Yamamoto K, Tada S, Nishino K, Kawanishi S (1995) Metal-mediated oxidative damage to cellular and isolated DNA by certain tryptophan metabolites. Carcinogenesis 16:349–356

    CAS  PubMed  Google Scholar 

  • Hirata F, Hayaishi O (1971) Possible participation of superoxide anion in the intestinal tryptophan 2,3-dioxygenase reaction. J Biol Chem 246:7825–7826

    CAS  PubMed  Google Scholar 

  • Hoff AL, Sakuma M, Wieneke M, Horon R, Kushner M, DeLisi LE (1999) Longitudinal neuropsychological follow-up study of patients with first-episode schizophrenia. Am J Psychiatry 156:1336–1341

    CAS  PubMed  Google Scholar 

  • Kaiser S, Wonnacott S (2000) alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [(3)H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58:312–318

    CAS  PubMed  Google Scholar 

  • Kannan G, Pletnikov MV (2012) Toxoplasma gondii and cognitive deficits in schizophrenia: an animal model perspective. Schizophr Bull 38:1155–1161

    PubMed Central  PubMed  Google Scholar 

  • Kawai J, Okuno E, Kido R (1988) Organ distribution of rat kynureninase and changes of its activity during development. Enzyme 39:181–189

    CAS  PubMed  Google Scholar 

  • Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    CAS  PubMed  Google Scholar 

  • Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650

    CAS  PubMed  Google Scholar 

  • Konradsson-Geuken A, Wu HQ, Gash CR, Alexander KS, Campbell A, Sozeri Y, Pellicciari R, Schwarcz R, Bruno JP (2010) Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience 169:1848–1859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krause D, Suh HS, Tarassishi L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao ML, Lee SC (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179:1360–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lardy HA (1971) The role of tryptophan metabolites in regulating gluconeogenesis. Am J Clin Nutr 24:764–765

    CAS  PubMed  Google Scholar 

  • Lee MW, Park SC, Chae HS, Bach JH, Lee HJ, Lee SH, Kang YK, Kim KY, Lee WB, Kim SS (2001) The protective role of HSP90 against 3-hydroxykynurenine-induced neuronal apoptosis. Biochem Biophys Res Commun 284:261–267

    CAS  PubMed  Google Scholar 

  • Lee HJ, Bach JH, Chae HS, Lee SH, Joo WS, Choi SH, Kim KY, Lee WB, Kim SS (2004) Mitogen-activated protein kinase/extracellular signal-regulated kinase attenuates 3-hydroxykynurenine-induced neuronal cell death. J Neurochem 88:647–656

    CAS  PubMed  Google Scholar 

  • Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, Dutra-Filho CS, Wyse AT, Wannmacher CM, Latini A, Wajner M (2007) In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 50:83–94

    CAS  PubMed  Google Scholar 

  • Leweke FM, Gerth CW, Koethe D, Klosterkötter J, Ruslanova I, Krivogorsky B, Torrey EF, Yolken RH (2004) Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur Arch Psychiatry Clin Neurosci 254:4–8

    PubMed  Google Scholar 

  • Lewis DA, Moghaddam B (2006) Cognitive dysfunction in schizophrenia: convergence of gamma-aminobutyric acid and glutamate alterations. Arch Neurol 63:1372–1376

    PubMed  Google Scholar 

  • Lima VL, Dias F, Nunes RD, Pereira LO, Santos TS, Chiarini LB, Ramos TD, Silva-Mendes BJ, Perales J, Valente RH, Oliveira PL (2012) The antioxidant role of xanthurenic acid in the Aedes aegypti midgut during digestion of a blood meal. PLoS One 7:e38349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9(1):119–131

    Google Scholar 

  • Luchowski P, Urbanska EM (2007) SNAP and SIN-1 increase brain production of kynurenic acid. Eur J Pharmacol 563:130–133

    CAS  PubMed  Google Scholar 

  • Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I, Pinzón E, Ortiz-Islas E, López T, García E, Pineda B, Torres-Ramos M, Santamaría A, La Cruz VP (2011a) On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33:538–547

    PubMed  Google Scholar 

  • Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz PE, Serratos-Álvarez I, Ortiz-Islas E, García-Sánchez MA, Santamaría A, Pérez-de la Cruz V (2011b) L- and D-kynurenine as precursors of kynurenic acid through ONOO- in synthetic systems and in vitro conditions. Soc Neurosci Abs:466.06

    Google Scholar 

  • Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom F, Kupfer D (eds) Selected chapters on mood disorders, 4th edn, Psychopharmacology. Raven Press, New York, pp 933–944

    Google Scholar 

  • Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new ‘5-HT’ hypothesis of depression: Cell mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35:702–721

    CAS  PubMed  Google Scholar 

  • Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S (1999) Enzymology of NAD+ synthesis. Adv Enzymol Relat Areas Mol Biol 73:135–182, xi

    CAS  PubMed  Google Scholar 

  • Matsumoto T, Pollock J, Nakane M, Forstermann U (1993) Development changes of cytosolic and particulate nitric oxide synthase in rat brain. Brain Res Dev Brain Res 73:199–203

    CAS  PubMed  Google Scholar 

  • Mednick SA, Machon RA, Huttunen MO, Bonett D (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45:189–192

    CAS  PubMed  Google Scholar 

  • Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miche H, Brumas V, Berthon G (1997) Copper(II) interactions with nonsteroidal antiinflammatory agents. II. Anthranilic acid as a potential OH-inactivating ligand. J Inorg Biochem 68:27–38

    CAS  PubMed  Google Scholar 

  • Miller CL, Llenos IC, Dulay JR, Barillo MM, Yolken RH, Weis S (2004) Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 15:618–629

    CAS  PubMed  Google Scholar 

  • Miller CL, Llenos IC, Cwik M, Walkup J, Weis S (2008) Alterations in kynurenine precursor and product levels in schizophrenia and bipolar disorder. Neurochem Int 52:1297–1303

    CAS  PubMed  Google Scholar 

  • Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87–100

    CAS  PubMed  Google Scholar 

  • Moroni F, Cozzi A, Sili M, Mannaioni G (2012) Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119:133–139

    CAS  PubMed  Google Scholar 

  • Mortensen PB, Nørgaard-Pedersen B, Waltoft BL, Sørensen TL, Hougaard D, Yolken RH (2007) Early infections of Toxoplasma gondii and the later development of schizophrenia. Schizophr Bull 33:741–744

    PubMed Central  PubMed  Google Scholar 

  • Muller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10:131–148

    CAS  PubMed  Google Scholar 

  • Müller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12(11):988–1000

    Google Scholar 

  • Myint AM (2012) Kynurenines: from the perspective of major psychiatric disorders. FEBS J 279:1375–1385

    CAS  PubMed  Google Scholar 

  • Nakagami Y, Saito H, Katsuki H (1996) 3-Hydroxykynurenine toxicity on the rat striatum in vivo. Jpn J Pharmacol 71:183–186

    CAS  PubMed  Google Scholar 

  • Németh H, Toldi J, Vécsei L (2006) Kynurenines, Parkinson’s disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm 70:285–304

    Google Scholar 

  • Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K et al (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 107:19961–19966

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindström LH, Nordin C, Karanti A, Persson P, Erhardt S (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80:315–322

    CAS  PubMed  Google Scholar 

  • O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522

    PubMed Central  PubMed  Google Scholar 

  • Oh GS, Pae HO, Choi BM, Chae SC, Lee HS, Ryu DG, Chung HT (2004) 3-Hydroxyanthranilic acid, one of metabolites of tryptophan via indoleamine 2,3-dioxygenase pathway, suppresses inducible nitric oxide synthase expression by enhancing heme oxygenase-1 expression. Biochem Biophys Res Commun 320:1156–1162

    CAS  PubMed  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1996) Hydrogen peroxide-mediated neuronal cell death induced by an endogenous neurotoxin, 3- hydroxykynurenine. Proc Natl Acad Sci U S A 93:12553–12558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3‑Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307

    CAS  PubMed  Google Scholar 

  • Optiz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    Google Scholar 

  • Oshiro H, Tonai-Kachi H, Ichikawa K (2008) GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem Biophys Res Commun 365:344–348

    Google Scholar 

  • Oxenkrug GF (2011) Interferon-gamma-inducible kynurenines/pteridines inflammation cascade: implications for aging and aging-associated psychiatric and medical disorders. J Neural Transm 118:75–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pais TF, Appelberg R (2000) Macrophage control of mycobacterial growth induced by picolinic acid is dependent on host cell apoptosis. J Immunol 164:389–397

    CAS  PubMed  Google Scholar 

  • Pearson SJ, Reynolds GP (1992) Increased brain concentrations of a neurotoxin, 3‑hydroxykynurenine, in Huntington’s disease. Neurosci Lett 144:199–201

    CAS  PubMed  Google Scholar 

  • Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interferon Cytokine Res 17:589–595

    CAS  PubMed  Google Scholar 

  • Pérez-de la Cruz V, González-Cortés C, Galván-Arzate S, Medina-Campos ON, Pérez-Severiano F, Ali SF, Pedraza-Chaverrí J, Santamaría A (2005) Excitotoxic brain damage involves early peroxynitrite formation in a model of Huntington’s disease in rats: protective role of iron porphyrinate 5, 10, 15, 20-tetrakis (4-sulfonatophenyl)porphyrinate iron (III). Neuroscience 135:463–474

    PubMed  Google Scholar 

  • Phillis JW (1994) A “radical” view of cerebral ischemic injury. Prog Neurobiol 42:441–448

    CAS  PubMed  Google Scholar 

  • Pláteník J, Stopka P, Vejrazka M, Stípek S (2001) Quinolinic acid-iron(ii) complexes: slow autooxidation, but enhanced hydroxyl radical production in the Fenton reaction. Free Radic Res 34:445–459

    PubMed  Google Scholar 

  • Pocivavsek A, Wu HQ, Elmer GI, Bruno JP, Schwarcz R (2012) Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur J Neurosci 35:1605–1612

    Google Scholar 

  • Politi V, Lavaggi MV, Di Stazio G, Margonelli A (1991) Indole-3-pyruvic acid as a direct precursor of kynurenic acid. Adv Exp Med Biol 294:515–518

    CAS  PubMed  Google Scholar 

  • Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, Schwarcz R (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35:1734–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pucci L, Perozzi S, Cimadamore F, Orsomando G, Raffaelli N (2007) Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism. FEBS J 274:827–840

    CAS  PubMed  Google Scholar 

  • Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55:215–224

    CAS  PubMed  Google Scholar 

  • Rassoulpour A, Wu HQ, Ferre S, Schwarcz R (2005) Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 93:762–765

    CAS  PubMed  Google Scholar 

  • Ríos C, Santamaría A (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates. Neurochem Res 16:1139–1143

    PubMed  Google Scholar 

  • Robinson CM, Hale PT, Carlin JM (2005) The role of IFN-gamma and TNF-alpha-responsive regulatory elements in the synergistic induction of indoleamine dioxygenase. J Interferon Cytokine Res 25:20–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Martínez E, Camacho A, Maldonado PD, Pedraza-Chaverrí J, Santamaría D, Galván-Arzate S, Santamaría A (2000) Effect of quinolinic acid in endogenous antioxidants in rat corpus striatum. Brain Res 858:436–439

    PubMed  Google Scholar 

  • Rosenman SJ, Shrikant P, Dubb L, Benveniste EN, Ransohoff RM (1995) Cytokine induced expression of vascular cell adhesion molecule-1 (VCAM-1) by astrocytes and astrocytoma cell lines. J Immunol 154:1888–1899

    CAS  PubMed  Google Scholar 

  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8:1–27

    PubMed  Google Scholar 

  • Saito K, Markey SP, Heyes MP (1992) Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience 51:25–39

    CAS  PubMed  Google Scholar 

  • Saito K, Nowak TS Jr, Markey SP, Heyes MP (1993) Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia. J Neurochem 60:180–192

    CAS  PubMed  Google Scholar 

  • Saito K, Markey SP, Heyes MP (1994) 6-Chloro-D, L-tryptophan, 4-chloro-3-hydroxyanthranilate and dexamethasone attenuate quinolinic acid accumulation in brain and blood following systemic immune activation. Neurosci Lett 178:211–215

    CAS  PubMed  Google Scholar 

  • Salter M, Pogson CI (1985) The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem J 229(2):499–504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santamaría A, Ríos C (1993) Mk-801, an N-methyl-D-aspartate receptor antagonist, block quinolinic acid-induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54

    PubMed  Google Scholar 

  • Santamaría A, Pérez-Severiano F, Rpdríguez-Martínez E, Maldonado PD, Pedraza-Chaverrí J, Ríos SJ (2011a) Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington’s disease. Neurochem Res 26:419–424

    Google Scholar 

  • Santamaría A, Jiménez-Capdeville ME, Camacho A, Rodríguez-Martínez E, Flores A, Galván-Arzate S (2011b) In vivo hydroxyl radical formation after quinolinic acid infusion into rat corpus striatum. Neuroreport 12:2693–2696

    Google Scholar 

  • Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing in schizophrenia. Schizophr Bull 31:117–138

    PubMed  Google Scholar 

  • Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, Schwarcz R (2011) Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull 37:1147–1156

    PubMed Central  PubMed  Google Scholar 

  • Scharfman HE, Goodman JH, Schwarcz R (2000) Electrophysiological effects of exogenous and endogenous kynurenic acid in the rat brain: studies in vivo and in vitro. Amino Acids 19:283–297

    CAS  PubMed  Google Scholar 

  • Schipper HM (1996) Astrocytes, brain aging, and neurodegeneration. Neurobiol Aging 17:467–480

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2010) Of mice, rats and men: Revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol 90(2):230–245

    Google Scholar 

  • Schwarcz R, Hunter CA (2007) Toxoplasma gondii and schizophrenia: linkage through astrocyte-derived kynurenic acid? Schizophr Bull 33:652–663

    PubMed Central  PubMed  Google Scholar 

  • Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    CAS  PubMed  Google Scholar 

  • Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ (2012) Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 13:465–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekkaï D, Guittet O, Lemaire G, Tenu JP, Lepoivre M (1997) Inhibition of nitric oxide synthase expression and activity in macrophages by 3-hydroxyanthranilic acid, a tryptophan metabolite. Arch Biochem Biophys 340:117–123

    PubMed  Google Scholar 

  • Shepard PD, Joy B, Clerkin L, Schwarcz R (2003) Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 28:1454–1462

    CAS  PubMed  Google Scholar 

  • Sher E, Chen Y, Sharples TJ, Broad LM, Benedetti G, Zwart R, McPhie GI, Pearson KH, Baldwinson T, De Filippi G (2004) Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr Top Med Chem 4:283–297

    CAS  PubMed  Google Scholar 

  • Steffen B, Breier G, Butcher E, Schulz M, Engelhardt B (1996) VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol 148:1819–1838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stella N, Estelles A, Siciliano J, Tence M, Desagher S, Piomelli D, Glowinski J, Premont J (1997) Interleukin- 1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J Neurosci 17:2939–2946

    CAS  PubMed  Google Scholar 

  • Stevens CO, Henderson LM (1959) Riboflavin and hepatic kynurenine hydroxylase. J Biol Chem 234:1191–1194

    CAS  PubMed  Google Scholar 

  • Stípek S, Stastný F, Pláteník J, Crkovská J, Zima T (1997) The effect of quinolinate on rat brain lipid peroxidation is dependent on iron. Neurochem Int 30(2):233–237

    Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic acid and kynurenic acid acids. Pharmacol Rev 45:309–379

    CAS  PubMed  Google Scholar 

  • Stone TW, Behan WM, MacDonald M, Darlington LG (2000) Possible mediation of quinolinic acid-induced hippocampal damage by reactive oxygen species. Amino Acids 19:275–281

    CAS  PubMed  Google Scholar 

  • Sun Y (1989) Indoleamine 2,3-dioxygenase-a new antioxidant enzyme. Mater Med Pol 21:244–250

    CAS  PubMed  Google Scholar 

  • Susel Z, Engber TM, Chase TN (1989) Behavioral evaluation of the anti-excitotoxic properties of MK-801: comparison with neurochemical measurements. Neurosci Lett 104:125–129

    CAS  PubMed  Google Scholar 

  • Terness P, Bauer TM, Röse L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 196:447–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas SR, Stocker R (1999) Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 4:199–220

    CAS  PubMed  Google Scholar 

  • Thomas SR, Mohr D, Stocker R (1994) Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-gamma primed mononuclear phagocytes. J Biol Chem 269:14457–11464

    CAS  PubMed  Google Scholar 

  • Thomas SR, Witting PK, Stocker R (1996) 3-Hydroxyanthranilic acid is an efficient, cell-derived co-antioxidant for alpha-tocopherol, inhibiting human low density lipoprotein and plasma lipid peroxidation. J Biol Chem 271:32714–32721

    CAS  PubMed  Google Scholar 

  • Traystman RJ, Kirsch JR, Koehler RC (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 71:1185–1195

    CAS  PubMed  Google Scholar 

  • Ugalde-Muñiz P, Lugo-Huitrón R, Blanco-Ayala T, Pineda B, Campos-Peña V, Pedraza-Chaverrí J, Schwarcz R, Santamaría A, Pérez-de la Cruz V (2012) On the scavenging properties of L-kynurenine and its anti-oxidant effect in various pro-oxidants models. Program No. 62.15. Neuroscience Meeting Planner. New Orleans, LA: Society for Neuroscience

    Google Scholar 

  • Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H et al (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    CAS  PubMed  Google Scholar 

  • Weber WP, Feder-Mengus C, Chiarugi A, Rosenthal R, Reschner A, Schumacher R, Zajac P, Misteli H, Frey DM, Oertli D, Heberer M, Spagnoli GC (2006) Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Eur J Immunol 36:296–304

    CAS  PubMed  Google Scholar 

  • Wonnacott S, Barik J, Dickinson J, Jones IW (2006) Nicotinic receptors modulate transmitter cross talk in the CNS: nicotinic modulation of transmitters. J Mol Neurosci 30:137–140

    CAS  PubMed  Google Scholar 

  • Woodroofe M (1995) Cytokine production in the central nervous system. Neurology 45:S6–S10

    CAS  PubMed  Google Scholar 

  • Wu HQ, Rassoulpour A, Schwarcz R (2007) Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J Neural Transm 114:33–41

    PubMed  Google Scholar 

  • Wu HQ, Pereira EF, Bruno JP, Pellicciari R, Albuquerque EX, Schwarcz R (2010) The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci 40:204–210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Zhao Z, He L, Wan C (2010) A meta-analysis of oxidative stress markers in schizophrenia. Sci China Life Sci 53:112–124

    CAS  PubMed  Google Scholar 

  • Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP (2009) Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci 29:529–538

    CAS  PubMed  Google Scholar 

  • Zsizsik BK, Hardeland R (1999a) Comparative studies on kynurenic, xanhurenic, and quindalic acids as scavengers of hydroxyl and ABTS cation radicals. In: Hardeland R (ed) Studies on antioxidants and their metabolites. Cuvillier, Göttingen, pp 82–91

    Google Scholar 

  • Zsizsik BK, Hardeland R (1999b) Kynurenic acid inhibits hydroxyl radical-induced destruction of 2-deoxyribose. In: Hardeland R (ed) Studies on antioxidants and their metabolites. Cuvillier, Göttingen, pp 92–94

    Google Scholar 

  • Zsizsik BK, Hardeland R (2001) A putative mechanism of kynurenic acid oxidation by free radicals: scavenging of two hydroxyl radicals and superoxide anion, release of •NO and CO2. In: Hardeland R (ed) Actions and redox properties of melatonin and other aromatic amino acid metabolites. Cuvillier, Göttingen, pp 164–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Pérez-de la Cruz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pineda, B., Campos-Peña, V., Lugo-Huitrón, R., Ríos, C., Pérez-de la Cruz, V. (2015). The Kynurenine Pathway at the Interface Between Neuroinflammation, Oxidative Stress, and Neurochemical Disturbances: Emphasis in Schizophrenia. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_13

Download citation

Publish with us

Policies and ethics