Skip to main content

The Reciprocal Effects of Oxidative Stress and Glutamate Neurotransmission

  • Chapter
  • First Online:
Studies on Psychiatric Disorders

Abstract

The occurrence of oxidative phenomena during glutamatergic neurotransmission and its pathological correlate, excitotoxicity, was recognized early and is still the focus of active research. The present section will provide a brief overview of key components of glutamatergic transmission. The impact of redox status on glutamate release, reuptake, receptor expression, and function will be reviewed as well as some aspects of the complex neuroenergetics of the “tripartite synapse.” Symmetrically, we will also address how glutamate modulates redox status through effectors such as mitochondrial dynamics, NADPH oxidase stimulation, nitric oxide levels, and the redox modulating cystine glutamate exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-HNE:

4-hydroxynonenal

AMPA:

α-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid

ATP:

Adenosine triphosphate

cGCL:

Catalytic subunit of glutamate cysteine ligase

CNS:

Central nervous system

COX2:

Cyclooxygenase-2

DNA:

Deoxyribonucleic acid

Drp1:

Dynamin-related protein 1

DTNB:

5, 5′-dithio-bis[2-nitrobenzoic acid]

DTT:

Dithiothreitol

EAAC:

Excitatory amino acid carriers

Egr-1:

Early growth response protein

EPSC:

Excitatory post synaptic currents

ERK:

Extracellular signal-regulated kinase

H2O2 :

Hydrogen peroxide

iNOS:

Nitric oxide synthase, inducible form

KA:

Kainate

MPTP:

1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine

NAC:

N-acetylcysteine

NFκB:

Nuclear factor-kappaB

NMDA:

N-methyl-D-aspartate

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

NOX2:

NADPH oxidase

NRF1:

Nuclear respiratory factor 1

Nrf2:

NF-E2-related factor

O2 :

Superoxide anion

ONOO:

Peroxynitrite

OPA1:

Optical atrophy protein 1

PKG:

Protein kinase G

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SIN-1:

3-morpholinosydnonimine

Sp1:

Specificity protein 1

t-BHQ:

tert-Butylhydroquinone

t-bOOH:

tert-Butylhydroperoxide

References

  • Agostinho P, Duarte CB, Oliveira CR (1996) Activity of ionotropic glutamate receptors in retinal cells: effect of ascorbate/Fe(2+)-induced oxidative stress. J Neurochem 67:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Aizenman E, Lipton SA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2:1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Alekseenko AV, Lemeshchenko VV, Pekun TG, Waseem TV, Fedorovich SV (2012) Glutamate-induced free radical formation in rat brain synaptosomes is not dependent on intrasynaptosomal mitochondria membrane potential. Neurosci Lett 513:238–242

    Article  CAS  PubMed  Google Scholar 

  • Almeida A, Bolanos JP (2001) A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J Neurochem 77:676–690

    Article  CAS  PubMed  Google Scholar 

  • Aoyama K, Matsumura N, Watabe M, Nakaki T (2008) Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction. Eur J Neurosci 27:20–30

    Article  PubMed  Google Scholar 

  • Bae JH, Mun KC, Park WK, Lee SR, Suh SI, Baek WK, Yim MB, Kwon TK, Song DK (2002) EGCG attenuates AMPA-induced intracellular calcium increase in hippocampal neurons. Biochem Biophys Res Commun 290:1506–1512

    Article  CAS  PubMed  Google Scholar 

  • Bal-Price A, Brown GC (2001) Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci 21:6480–6491

    CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318:1645–1647

    Article  CAS  PubMed  Google Scholar 

  • Bell KF, Fowler JH, Al-Mubarak B, Horsburgh K, Hardingham GE (2011a) Activation of Nrf2-regulated glutathione pathway genes by ischemic preconditioning. Oxid Med Cell Longev 2011:689524

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell KF, Al-Mubarak B, Fowler JH, Baxter PS, Gupta K, Tsujita T, Chowdhry S, Patani R, Chandran S, Horsburgh K, Hayes JD, Hardingham GE (2011b) Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning. Proc Natl Acad Sci U S A 108:E1–2; author reply E3-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bindokas VP, Jordan J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16:1324–1336

    CAS  PubMed  Google Scholar 

  • Brennan AM, Suh SW, Won SJ, Narasimhan P, Kauppinen TM, Lee H, Edling Y, Chan PH, Swanson RA (2009) NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation. Nat Neurosci 12:857–863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brimecombe JC, Boeckman FA, Aizenman E (1997) Functional consequences of NR2 subunit composition in single recombinant N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 94:11019–11024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brimecombe JC, Potthoff WK, Aizenman E (1999) A critical role of the N-methyl-D-aspartate (NMDA) receptor subunit (NR) 2A in the expression of redox sensitivity of NR1/NR2A recombinant NMDA receptors. J Pharmacol Exp Ther 291:785–792

    CAS  PubMed  Google Scholar 

  • Bruce AJ, Baudry M (1995) Oxygen free radicals in rat limbic structures after kainate-induced seizures. Free Radic Biol Med 18:993–1002

    Article  CAS  PubMed  Google Scholar 

  • Caracciolo L, Barbon A, Palumbo S, Mora C, Toscano CD, Bosetti F, Barlati S (2011) Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice. PLoS One 6:e19398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A, Lopez-Bayghen E (2011) Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells. Toxicol Sci 122:539–550

    Article  CAS  PubMed  Google Scholar 

  • Chinopoulos C, Adam-Vizi V (2006) Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme. FEBS J 273:433–450

    Article  CAS  PubMed  Google Scholar 

  • Choi SY, Hwang JJ, Koh JY (2004) NR2A induction and NMDA receptor-dependent neuronal death by neurotrophin-4/5 in cortical cell culture. J Neurochem 88:708–716

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Delibas N, Altuntas I, Sutcu R, Yonden Z, Koylu H (2004) Effects of dietary long chain PUFAs on hippocampal lipid peroxidation and NMDA receptor subunits A and B concentration in streptozotocin-diabetic rats. Int J Neurosci 114:1353–1364

    Article  CAS  PubMed  Google Scholar 

  • Dhar SS, Wong-Riley MT (2009) Coupling of energy metabolism and synaptic transmission at the transcriptional level: role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes. J Neurosci 29:483–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Maio R, Mastroberardino PG, Hu X, Montero L, Greenamyre JT (2011) Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms. Neurobiol Dis 42:482–495

    Article  PubMed  Google Scholar 

  • Didier M, Bursztajn S, Adamec E, Passani L, Nixon RA, Coyle JT, Wei JY, Berman SA (1996) DNA strand breaks induced by sustained glutamate excitotoxicity in primary neuronal cultures. J Neurosci 16:2238–2250

    CAS  PubMed  Google Scholar 

  • Dong Y, Zhang W, Lai B, Luan WJ, Zhu YH, Zhao BQ, Zheng P (2012) Two free radical pathways mediate chemical hypoxia-induced glutamate release in synaptosomes from the prefrontal cortex. Biochim Biophys Acta 1823:493–504

    Article  CAS  PubMed  Google Scholar 

  • Emery AC, Pshenichkin S, Takoudjou GR, Grajkowska E, Wolfe BB, Wroblewski JT (2010) The protective signaling of metabotropic glutamate receptor 1 Is mediated by sustained, beta-arrestin-1-dependent ERK phosphorylation. J Biol Chem 285:26041–26048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Escartin C, Won SJ, Malgorn C, Auregan G, Berman AE, Chen PC, Deglon N, Johnson JA, Suh SW, Swanson RA (2011) Nuclear factor erythroid 2-related factor 2 facilitates neuronal glutathione synthesis by upregulating neuronal excitatory amino acid transporter 3 expression. J Neurosci 31:7392–7401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao Y, Howard A, Ban K, Chandra J (2009) Oxidative stress promotes transcriptional up-regulation of Fyn in BCR-ABL1-expressing cells. J Biol Chem 284:7114–7125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geiger JR, Lubke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Gilman SC, Bonner MJ, Pellmar TC (1994) Free radicals enhance basal release of D-[3H]aspartate from cerebral cortical synaptosomes. J Neurochem 62:1757–1763

    CAS  PubMed  Google Scholar 

  • Girouard H, Wang G, Gallo EF, Anrather J, Zhou P, Pickel VM, Iadecola C (2009) NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 29:2545–2552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gluck MR, Jayatilleke E, Shaw S, Rowan AJ, Haroutunian V (2000) CNS oxidative stress associated with the kainic acid rodent model of experimental epilepsy. Epilepsy Res 39:63–71

    Article  CAS  PubMed  Google Scholar 

  • Grohm J, Plesnila N, Culmsee C (2010) Bid mediates fission, membrane permeabilization and peri-nuclear accumulation of mitochondria as a prerequisite for oxidative neuronal cell death. Brain Behav Immun 24:831–838

    Article  CAS  PubMed  Google Scholar 

  • Guemez-Gamboa A, Estrada-Sanchez AM, Montiel T, Paramo B, Massieu L, Moran J (2011) Activation of NOX2 by the stimulation of ionotropic and metabotropic glutamate receptors contributes to glutamate neurotoxicity in vivo through the production of reactive oxygen species and calpain activation. J Neuropathol Exp Neurol 70:1020–1035

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37:1147–1160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hazell AS, Sheedy D, Oanea R, Aghourian M, Sun S, Jung JY, Wang D, Wang C (2010) Loss of astrocytic glutamate transporters in Wernicke encephalopathy. Glia 58:148–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Holmseth S, Dehnes Y, Huang YH, Follin-Arbelet VV, Grutle NJ, Mylonakou MN, Plachez C, Zhou Y, Furness DN, Bergles DE, Lehre KP, Danbolt NC (2012) The density of EAAC1 (EAAT3) glutamate transporters expressed by neurons in the mammalian CNS. J Neurosci 32:6000–6013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hota SK, Barhwal K, Singh SB, Sairam M, Ilavazhagan G (2008) NR1 and GluR2 expression mediates excitotoxicity in chronic hypobaric hypoxia. J Neurosci Res 86:1142–1152

    Article  CAS  PubMed  Google Scholar 

  • Hota SK, Hota KB, Prasad D, Ilavazhagan G, Singh SB (2010) Oxidative-stress-induced alterations in Sp factors mediate transcriptional regulation of the NR1 subunit in hippocampus during hypoxia. Free Radic Biol Med 49:178–191

    Article  CAS  PubMed  Google Scholar 

  • Hsiao YH, Kuo JR, Chen SH, Gean PW (2012) Amelioration of social isolation-triggered onset of early Alzheimer’s disease-related cognitive deficit by N-acetylcysteine in a transgenic mouse model. Neurobiol Dis 45:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Isaac MG, Quinn R, Tabet N (2008) Vitamin E for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev 3, CD002854

    Google Scholar 

  • Ishikawa Y, Satoh T, Enokido Y, Nishio C, Ikeuchi T, Hatanaka H (1999) Generation of reactive oxygen species, release of L-glutamate and activation of caspases are required for oxygen-induced apoptosis of embryonic hippocampal neurons in culture. Brain Res 824:71–80

    Article  CAS  PubMed  Google Scholar 

  • Jane DE, Lodge D, Collingridge GL (2009) Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology 56:90–113

    Article  CAS  PubMed  Google Scholar 

  • Janssen-Heininger YM, Poynter ME, Baeuerle PA (2000) Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28:1317–1327

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 447:469–479

    Article  CAS  PubMed  Google Scholar 

  • Kohr G (2006) NMDA receptor function: subunit composition versus spatial distribution. Cell Tissue Res 326:439–446

    Article  PubMed  Google Scholar 

  • Kudin AP, Malinska D, Kunz WS (2008) Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors. Biochim Biophys Acta 1777:689–695

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Mehta SL, Li PA (2012) Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. PLoS One 7:e39382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AH, Roder JC (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  CAS  PubMed  Google Scholar 

  • Leavesley HB, Li L, Prabhakaran K, Borowitz JL, Isom GE (2008) Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity. Toxicol Sci 101:101–111

    Article  CAS  PubMed  Google Scholar 

  • Lee SG, Su ZZ, Emdad L, Gupta P, Sarkar D, Borjabad A, Volsky DJ, Fisher PB (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem 283:13116–13123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu C, Chan SL, Haughey N, Lee WT, Mattson MP (2001) Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J Neurochem 78:577–589

    Article  CAS  PubMed  Google Scholar 

  • Ma TM, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S, Sawa A, Snyder SH, Pletnikov MV (2013) Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 18(5):557–567

    Google Scholar 

  • McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358

    Article  CAS  PubMed  Google Scholar 

  • Miralles VJ, Martinez-Lopez I, Zaragoza R, Borras E, Garcia C, Pallardo FV, Vina JR (2001) Na + dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress. Brain Res 922:21–29

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y, Otani K, Kishimoto M, Morio A, Kotaka T, Okahisa Y, Matsushita M, Morikawa A, Hamase K, Zaitsu K, Kuroda S (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61:1200–1203

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Burke D, Koehler RC, Martin LJ (2008) Rapid NMDA receptor phosphorylation and oxidative stress precede striatal neurodegeneration after hypoxic ischemia in newborn piglets and are attenuated with hypothermia. Int J Dev Neurosci 26:67–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60

    Article  CAS  PubMed  Google Scholar 

  • Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–1558

    Article  CAS  PubMed  Google Scholar 

  • Nafia I, Re DB, Masmejean F, Melon C, Kachidian P, Kerkerian-Le Goff L, Nieoullon A, Had-Aissouni L (2008) Preferential vulnerability of mesencephalic dopamine neurons to glutamate transporter dysfunction. J Neurochem 105:484–496

    Article  CAS  PubMed  Google Scholar 

  • Nguyen D, Alavi MV, Kim KY, Kang T, Scott RT, Noh YH, Lindsey JD, Wissinger B, Ellisman MH, Weinreb RN, Perkins GA, Ju WK (2011) A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis 2:e240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panov A, Schonfeld P, Dikalov S, Hemendinger R, Bonkovsky HL, Brooks BR (2009) The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria. J Biol Chem 284:14448–14456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, Hardingham GE (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, Coccia R, Butterfield DA (2009) Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl 3:682–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piani D, Frei K, Pfister HW, Fontana A (1993) Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J Neuroimmunol 48:99–104

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro P, Mulle C (2006) Kainate receptors. Cell Tissue Res 326:457–482

    Article  CAS  PubMed  Google Scholar 

  • Piotrowski P (2003) Are experimental models useful for analysis of pathogenesis of changes in central nervous system in human diabetes? Folia Neuropathol 41:167–174

    PubMed  Google Scholar 

  • Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15:3318–3327

    CAS  PubMed  Google Scholar 

  • Ross JR, Porter BE, Buckley PT, Eberwine JH, Robinson MB (2011) mRNA for the EAAC1 subtype of glutamate transporter is present in neuronal dendrites in vitro and dramatically increases in vivo after a seizure. Neurochem Int 58:366–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rothman DL, Behar KL, Hyder F, Shulman RG (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 65:401–427

    Article  CAS  PubMed  Google Scholar 

  • Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez RM, Wang C, Gardner G, Orlando L, Tauck DL, Rosenberg PA, Aizenman E, Jensen FE (2000) Novel role for the NMDA receptor redox modulatory site in the pathophysiology of seizures. J Neurosci 20:2409–2417

    CAS  PubMed  Google Scholar 

  • Scanlon JM, Reynolds IJ (1998) Effects of oxidants and glutamate receptor activation on mitochondrial membrane potential in rat forebrain neurons. J Neurochem 71:2392–2400

    Article  CAS  PubMed  Google Scholar 

  • Serres S, Raffard G, Franconi JM, Merle M (2008) Close coupling between astrocytic and neuronal metabolisms to fulfill anaplerotic and energy needs in the rat brain. J Cereb Blood Flow Metab 28:712–724

    Article  CAS  PubMed  Google Scholar 

  • Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    Article  CAS  PubMed  Google Scholar 

  • Sitcheran R, Gupta P, Fisher PB, Baldwin AS (2005) Positive and negative regulation of EAAT2 by NF-kappaB: a role for N-myc in TNFalpha-controlled repression. EMBO J 24:510–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorce S, Schiavone S, Tucci P, Colaianna M, Jaquet V, Cuomo V, Dubois-Dauphin M, Trabace L, Krause KH (2010) The NADPH oxidase NOX2 controls glutamate release: a novel mechanism involved in psychosis-like ketamine responses. J Neurosci 30:11317–11325

    Article  CAS  PubMed  Google Scholar 

  • Sullivan JM, Traynelis SF, Chen HS, Escobar W, Heinemann SF, Lipton SA (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13:929–936

    Article  CAS  PubMed  Google Scholar 

  • Tateno M, Sadakata H, Tanaka M, Itohara S, Shin RM, Miura M, Masuda M, Aosaki T, Urushitani M, Misawa H, Takahashi R (2004) Calcium-permeable AMPA receptors promote misfolding of mutant SOD1 protein and development of amyotrophic lateral sclerosis in a transgenic mouse model. Hum Mol Genet 13:2183–2196

    Article  CAS  PubMed  Google Scholar 

  • Tretter L, Adam-Vizi V (2002) Glutamate release by an Na + load and oxidative stress in nerve terminals: relevance to ischemia/reperfusion. J Neurochem 83:855–862

    Article  CAS  PubMed  Google Scholar 

  • Vincent P, Mulle C (2009) Kainate receptors in epilepsy and excitotoxicity. Neuroscience 158:309–323

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Trotti D, Floridi S, Racagni G (1994a) Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications. Ann N Y Acad Sci 738:153–162

    Article  CAS  PubMed  Google Scholar 

  • Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994b) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932

    CAS  PubMed  Google Scholar 

  • Wallis N, Zagami CJ, Beart PM, O’Shea RD (2012) Combined excitotoxic-oxidative stress and the concept of non-cell autonomous pathology of ALS: insights into motoneuron axonopathy and astrogliosis. Neurochem Int 61:523–530

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Barger SW (2012) Cross-linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species. J Neurosci Res 90:1218–1229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Won MH, Kang T, Park S, Jeon G, Kim Y, Seo JH, Choi E, Chung M, Cho SS (2001) The alterations of N-Methyl-D-aspartate receptor expressions and oxidative DNA damage in the CA1 area at the early time after ischemia-reperfusion insult. Neurosci Lett 301:139–142

    Article  CAS  PubMed  Google Scholar 

  • Wu YC, Wang YJ, Tseng GF (2011) Ascorbic acid and alpha-tocopherol supplement starting prenatally enhances the resistance of nucleus tractus solitarius neurons to hypobaric hypoxic challenge. Brain Struct Funct 216:105–122

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Tsai PJ, Chen WY, Kuo JS (2003) Ionotropic glutamate receptors are involved in malondialdehyde production in anesthetized rat brain cortex: a microdialysis study. Redox Rep 8:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Tadokoro T, Keijzers G, Mattson MP, Bohr VA (2010) Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. J Biol Chem 285:28191–28199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Grignon M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grignon, S., Deslauriers, J. (2015). The Reciprocal Effects of Oxidative Stress and Glutamate Neurotransmission. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_11

Download citation

Publish with us

Policies and ethics