Skip to main content

Molecular Testing in Bone and Soft Tissue Tumors

  • Chapter
Molecular Testing in Cancer

Abstract

Classified by their histologic line of differentiation, bone and soft tissue tumours encompass a heterogenous population of neoplasms, with a spectrum of biologic potential. The molecular pathophysiology of most of these tumours can be basically divided into those with specific recurrent translocations or oncogenic mutations and nonspecific genetic findings and complex unbalanced karyotypes. Building on early gains derived from conventional cytogenetics, the molecular drivers and downstream pathways involved in these tumours are currently being characterized at an unprecedented rate. These advances can be rapidly translated into specific and sensitive diagnostic molecular markers—predominantly using fluorescence in situ hybridization and the reverse transcriptase polymerase chain reaction. The imminent introduction of techniques such as next generation sequencing and expression profiling into the pathology laboratory promises to usher a brave new world in molecular diagnostics that will also function as a discovery platform and define a more personalized approach to management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanas MR, Rubin BP, Tubbs RR, Billings SD, Downs-Kelly E, Goldblum JR. Utilization of fluorescence in situ hybridization in the diagnosis of 230 mesenchymal neoplasms: an institutional experience. Arch Pathol Lab Med. 2010;134(12):1797–803.

    PubMed  Google Scholar 

  2. Antonescu CR. The role of genetic testing in soft tissue sarcoma. Histopathology. 2006;48(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  3. Fletcher CDM, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013.

    Google Scholar 

  4. Coindre JM, Pedeutour F, Aurias A. Well-differentiated and dedifferentiated liposarcomas. Virchows Arch. 2010;456(2):167–79.

    Article  CAS  PubMed  Google Scholar 

  5. Dalal KM, Antonescu CR, Singer S. Diagnosis and management of lipomatous tumors. J Surg Oncol. 2008;97(4):298–313.

    Article  PubMed  Google Scholar 

  6. Evans HL, Soule EH, Winkelmann RK. Atypical lipoma, atypical intramuscular lipoma, and well differentiated retroperitoneal liposarcoma: a reappraisal of 30 cases formerly classified as well differentiated liposarcoma. Cancer. 1979;43(2):574–84.

    Article  CAS  PubMed  Google Scholar 

  7. He M, Aisner S, Benevenia J, Patterson F, Aviv H, Hameed M. p16 immunohistochemistry as an alternative marker to distinguish atypical lipomatous tumor from deep-seated lipoma. Appl Immunohistochem Mol Morphol. 2009;17(1):51–6.

    Article  CAS  PubMed  Google Scholar 

  8. Pedeutour F, Suijkerbuijk RF, Forus A, Van Gaal J, Van de Klundert W, Coindre JM, et al. Complex composition and co-amplification of SAS and MDM2 in ring and giant rod marker chromosomes in well-differentiated liposarcoma. Genes Chromosom Cancer. 1994;10(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  9. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992;358(6381):80–3.

    Article  CAS  PubMed  Google Scholar 

  10. Sirvent N, Coindre JM, Maire G, Hostein I, Keslair F, Guillou L, et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am J Surg Pathol. 2007;31(10):1476–89.

    Article  PubMed  Google Scholar 

  11. Weaver J, Rao P, Goldblum JR, Joyce MJ, Turner SL, Lazar AJ, et al. Can MDM2 analytical tests performed on core needle biopsy be relied upon to diagnose well-differentiated liposarcoma? Mod Pathol. 2010;23(10):1301–6.

    Article  CAS  PubMed  Google Scholar 

  12. Shimada S, Ishizawa T, Ishizawa K, Matsumura T, Hasegawa T, Hirose T. The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum Pathol. 2006;37(9):1123–9.

    Article  CAS  PubMed  Google Scholar 

  13. Moreau LC, Turcotte R, Ferguson P, Wunder J, Clarkson P, Masri B, et al. Myxoid\round cell liposarcoma (MRCLS) revisited: an analysis of 418 primarily managed cases. Ann Surg Oncol. 2012;19(4):1081–8.

    Article  PubMed  Google Scholar 

  14. Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W, et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol. 2001;159(2):411–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopez-Gines C, Navarro S, Peydro-Olaya A, Pellin A, Llombart-Bosch A. Malignant myxoid liposarcoma: an immunohistochemical, electron-microscopical and cytogenetical analysis. Appl Pathol. 1989;7(5):285–93.

    CAS  PubMed  Google Scholar 

  16. Mrozek K, Szumigala J, Brooks JS, Crossland DM, Karakousis CP, Bloomfield CD. Round cell liposarcoma with the insertion (12;16)(q13;p11.2p13). Am J Clin Pathol. 1997;108(1):35–9.

    CAS  PubMed  Google Scholar 

  17. Narendra S, Valente A, Tull J, Zhang S. DDIT3 gene break-apart as a molecular marker for diagnosis of myxoid liposarcoma—assay validation and clinical experience. Diagn Mol Pathol. 2011;20(4):218–24.

    Article  CAS  PubMed  Google Scholar 

  18. Powers MP, Wang WL, Hernandez VS, Patel KS, Lev DC, Lazar AJ, et al. Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 2010;23(10):1307–15.

    Article  CAS  PubMed  Google Scholar 

  19. Riggi N, Cironi L, Provero P, Suva ML, Stehle JC, Baumer K, et al. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 2006;66(14):7016–23.

    Article  CAS  PubMed  Google Scholar 

  20. Engstrom K, Willen H, Kabjorn-Gustafsson C, Andersson C, Olsson M, Goransson M, et al. The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells. Am J Pathol. 2006;168(5):1642–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Goransson M, Andersson MK, Forni C, Stahlberg A, Andersson C, Olofsson A, et al. The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-kappaB target genes by interaction with NFKBIZ. Oncogene. 2009;28(2):270–8.

    Article  CAS  PubMed  Google Scholar 

  22. Willems SM, Schrage YM, Bruijn IH, Szuhai K, Hogendoorn PC, Bovee JV. Kinome profiling of myxoid liposarcoma reveals NF-kappaB-pathway kinase activity and casein kinase II inhibition as a potential treatment option. Mol Cancer. 2010;9:257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest. 2011;91(10):1427–33.

    Article  CAS  PubMed  Google Scholar 

  24. Swanson DB, Cohen E, Ramyar L, Kandel RA, Dickson BC. MYH9-USP6 fusion transcript in nodular fasciitis: an institutional review. Mod Pathol. 2012;25(S2):20A.

    Google Scholar 

  25. Amary MF, Ye H, Berisha F, Tirabosco R, Presneau N, Flanagan AM. Detection of USP6 gene rearrangement in nodular fasciitis: an important diagnostic tool. Virchows Arch. 2013;463(1):97–8.

    Article  PubMed  Google Scholar 

  26. Billings SD, Giblen G, Fanburg-Smith JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): a clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol. 2005;29(2):204–10.

    Article  PubMed  Google Scholar 

  27. Evans HL. Low-grade fibromyxoid sarcoma: a clinicopathologic study of 33 cases with long-term follow-up. Am J Surg Pathol. 2011;35(10):1450–62.

    Article  PubMed  Google Scholar 

  28. Doyle LA, Moller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35(5):733–41.

    Article  PubMed  Google Scholar 

  29. Lau PP, Lui PC, Lau GT, Yau DT, Cheung ET, Chan JK. EWSR1-CREB3L1 gene fusion: a novel alternative molecular aberration of low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2013;37(5):734–8.

    Article  PubMed  Google Scholar 

  30. Mertens F, Fletcher CD, Antonescu CR, Coindre JM, Colecchia M, Domanski HA, et al. Clinicopathologic and molecular genetic characterization of low-grade fibromyxoid sarcoma, and cloning of a novel FUS/CREB3L1 fusion gene. Lab Invest. 2005;85(3):408–15.

    Article  CAS  PubMed  Google Scholar 

  31. Storlazzi CT, Mertens F, Nascimento A, Isaksson M, Wejde J, Brosjo O, et al. Fusion of the FUS and BBF2H7 genes in low grade fibromyxoid sarcoma. Hum Mol Genet. 2003;12(18):2349–58.

    Article  CAS  PubMed  Google Scholar 

  32. Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 1995;19(8):859–72.

    Article  CAS  PubMed  Google Scholar 

  33. Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 1999;59(12):2776–80.

    CAS  PubMed  Google Scholar 

  34. Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363(18):1727–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol. 2000;157(2):377–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, et al. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosom Cancer. 2003;37(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  37. Debiec-Rychter M, Marynen P, Hagemeijer A, Pauwels P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosom Cancer. 2003;38(2):187–90.

    Article  PubMed  Google Scholar 

  38. Debelenko LV, Arthur DC, Pack SD, Helman LJ, Schrump DS, Tsokos M. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest. 2003;83(9):1255–65.

    Article  CAS  PubMed  Google Scholar 

  39. Panagopoulos I, Nilsson T, Domanski HA, Isaksson M, Lindblom P, Mertens F, et al. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer. 2006;118(5):1181–6.

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi K, Soda M, Togashi Y, Sugawara E, Hatano S, Asaka R, et al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin Cancer Res. 2011;17(10):3341–8.

    Article  CAS  PubMed  Google Scholar 

  41. Marino-Enriquez A, Wang WL, Roy A, Lopez-Terrada D, Lazar AJ, Fletcher CD, et al. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35(1):135–44.

    Article  PubMed  Google Scholar 

  42. Yamamoto H, Oda Y, Saito T, Sakamoto A, Miyajima K, Tamiya S, et al. p53 mutation and MDM2 amplification in inflammatory myofibroblastic tumours. Histopathology. 2003;42(5):431–9.

    Article  CAS  PubMed  Google Scholar 

  43. Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334(6053):252–5.

    Article  PubMed  CAS  Google Scholar 

  44. Perot G, Croce S, Ribeiro A, Lagarde P, Velasco V, Neuville A, et al. MED12 alterations in both human benign and malignant uterine soft tissue tumors. PLoS One. 2012;7(6):e40015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kampjarvi K, Makinen N, Kilpivaara O, Arola J, Heinonen HR, Bohm J, et al. Somatic MED12 mutations in uterine leiomyosarcoma and colorectal cancer. Br J Cancer. 2012;107(10):1761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ravegnini G, Marino-Enriquez A, Slater J, Eilers G, Wang Y, Zhu M, et al. MED12 mutations in leiomyosarcoma and extrauterine leiomyoma. Mod Pathol. 2013;26(5):743–9.

    Article  CAS  PubMed  Google Scholar 

  47. Markowski DN, Huhle S, Nimzyk R, Stenman G, Loning T, Bullerdiek J. MED12 mutations occurring in benign and malignant mammalian smooth muscle tumors. Genes Chromosom Cancer. 2013;52(3):297–304.

    Article  CAS  PubMed  Google Scholar 

  48. Newton Jr WA, Soule EH, Hamoudi AB, Reiman HM, Shimada H, Beltangady M, et al. Histopathology of childhood sarcomas, Intergroup Rhabdomyosarcoma Studies I and II: clinicopathologic correlation. J Clin Oncol. 1988;6(1):67–75.

    PubMed  Google Scholar 

  49. Parham DM, Barr FG. Alveolar rhabdomyosarcoma. In: Fletcher CD, Unni KK, Mertens F, editors. World Health Organization classification of tumours: tumours of soft tissue and bone. Lyon: IARC Press; 2002. p. 150–2.

    Google Scholar 

  50. Kempson RL, Fletcher CDM, Evans HL, Hendrickson MR, Sibley RK. Tumors of the soft tissues. 3rd edn. In: Rosai J, Sobin LH, editors. Washington, DC: Armed Forces Institute of Pathology; 2001. ISBN 1881041603.

    Google Scholar 

  51. Raney RB, Oberlin O, Parham DM. An English Translation of Joseph Luc Riopelle, MD, (Hotel-Dieu of Montreal), and Jean Paul Theriault (Hopital General of Verdun, Quebec, Canada): Sur une forme meconnue de sarcome des parties molles: le rhabdomyosarcome alveolaire (concerning an unrecognized form of sarcoma of the soft tissues: alveolar rhabdomyosarcoma). annales d'anatomie pathologique 1956;1:88–111. Pediatr Dev Pathol. 2012;15(5):407–16.

    Article  PubMed  Google Scholar 

  52. Heerema-McKenney A, Wijnaendts LC, Pulliam JF, Lopez-Terrada D, McKenney JK, Zhu S, et al. Diffuse myogenin expression by immunohistochemistry is an independent marker of poor survival in pediatric rhabdomyosarcoma: a tissue microarray study of 71 primary tumors including correlation with molecular phenotype. Am J Surg Pathol. 2008;32(10):1513–22.

    Article  PubMed  Google Scholar 

  53. Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001;25(9):1150–7.

    Article  CAS  PubMed  Google Scholar 

  54. Wachtel M, Runge T, Leuschner I, Stegmaier S, Koscielniak E, Treuner J, et al. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol. 2006;24(5):816–22.

    Article  CAS  PubMed  Google Scholar 

  55. Morotti RA, Nicol KK, Parham DM, Teot LA, Moore J, Hayes J, et al. An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: the Children’s Oncology Group experience. Am J Surg Pathol. 2006;30(8):962–8.

    Article  PubMed  Google Scholar 

  56. Parham DM, Alaggio R, Coffin CM. Myogenic tumors in children and adolescents. Pediatr Dev Pathol. 2012;15(1 Suppl):211–38.

    Article  PubMed  Google Scholar 

  57. Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JF, Maurer HM, et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol. 2002;20(11):2672–9.

    Article  CAS  PubMed  Google Scholar 

  58. Barr FG, Qualman SJ, Macris MH, Melnyk N, Lawlor ER, Strzelecki DM, et al. Genetic heterogeneity in the alveolar rhabdomyosarcoma subset without typical gene fusions. Cancer Res. 2002;62(16):4704–10.

    CAS  PubMed  Google Scholar 

  59. Williamson D, Missiaglia E, de Reynies A, Pierron G, Thuille B, Palenzuela G, et al. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010;28(13):2151–8.

    Article  PubMed  Google Scholar 

  60. Stegmaier S, Poremba C, Schaefer KL, Leuschner I, Kazanowska B, Bekassy AN, et al. Prognostic value of PAX-FKHR fusion status in alveolar rhabdomyosarcoma: a report from the cooperative soft tissue sarcoma study group (CWS). Pediatr Blood Cancer. 2011;57(3):406–14.

    Article  PubMed  Google Scholar 

  61. Missiaglia E, Williamson D, Chisholm J, Wirapati P, Pierron G, Petel F, et al. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012;30(14):1670–7.

    Article  PubMed  Google Scholar 

  62. Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett. 2008;270(1):10–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lae M, Ahn EH, Mercado GE, Chuai S, Edgar M, Pawel BR, et al. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol. 2007;212(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  64. Ahn EH, Mercado GE, Lae M, Ladanyi M. Identification of target genes of PAX3-FOXO1 in alveolar rhabdomyosarcoma. Oncol Rep. 2013;30(2):968–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cates JM, Coffin CM. Neurogenic tumors of soft tissue. Pediatr Dev Pathol. 2012;15(1 Suppl):62–107.

    Article  PubMed  Google Scholar 

  66. Scheithauer BW, Woodruff J, Erlandson RA. Tumors of the peripheral nervous system. Washington, DC: Armed Forces Institute of Pathology; 1999.

    Google Scholar 

  67. Guillou L, Aurias A. Soft tissue sarcomas with complex genomic profiles. Virchows Arch. 2010;456(2):201–17.

    Article  CAS  PubMed  Google Scholar 

  68. Grobmyer SR, Reith JD, Shahlaee A, Bush CH, Hochwald SN. Malignant Peripheral Nerve Sheath Tumor: molecular pathogenesis and current management considerations. J Surg Oncol. 2008;97(4):340–9.

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt H, Wurl P, Taubert H, Meye A, Bache M, Holzhausen HJ, et al. Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer. 1999;25(3):205–11.

    Article  CAS  PubMed  Google Scholar 

  70. Theos A, Korf BR. Pathophysiology of neurofibromatosis type 1. Ann Intern Med. 2006;144(11):842–9.

    Article  PubMed  Google Scholar 

  71. Kourea HP, Cordon-Cardo C, Dudas M, Leung D, Woodruff JM. Expression of p27(kip) and other cell cycle regulators in malignant peripheral nerve sheath tumors and neurofibromas: the emerging role of p27(kip) in malignant transformation of neurofibromas. Am J Pathol. 1999;155(6):1885–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nielsen GP, Stemmer-Rachamimov AO, Ino Y, Moller MB, Rosenberg AE, Louis DN. Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol. 1999;155(6):1879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miller SJ, Rangwala F, Williams J, Ackerman P, Kong S, Jegga AG, et al. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res. 2006;66(5):2584–91.

    Article  CAS  PubMed  Google Scholar 

  74. Arbajian E, Magnusson L, Brosjo O, Wejde J, Folpe AL, Nord KH, et al. A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone. Am J Surg Pathol. 2013;37(4):613–6.

    Article  PubMed  Google Scholar 

  75. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mendlick MR, Nelson M, Pickering D, Johansson SL, Seemayer TA, Neff JR, et al. Translocation t(1;3)(p36.3;q25) is a nonrandom aberration in epithelioid hemangioendothelioma. Am J Surg Pathol. 2001;25(5):684–7.

    Article  CAS  PubMed  Google Scholar 

  77. Errani C, Zhang L, Sung YS, Hajdu M, Singer S, Maki RG, et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosom Cancer. 2011;50(8):644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, Hanwright PJ, et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med. 2011;3(98):98ra82.

    Article  PubMed  CAS  Google Scholar 

  79. Errani C, Sung YS, Zhang L, Healey JH, Antonescu CR. Monoclonality of multifocal epithelioid hemangioendothelioma of the liver by analysis of WWTR1-CAMTA1 breakpoints. Cancer Genet. 2012;205(1–2):12–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL, et al. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosom Cancer. 2013;52(8):775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boudousquie AC, Lawce HJ, Sherman R, Olson S, Magenis RE, Corless CL. Complex translocation [7;22] identified in an epithelioid hemangioendothelioma. Cancer Genet Cytogenet. 1996;92(2):116–21.

    Article  CAS  PubMed  Google Scholar 

  82. Rogatto SR, Rainho CA, Zhang ZM, Figueiredo F, Barbieri-Neto J, Georgetto SM, et al. Hemangioendothelioma of bone in a patient with a constitutional supernumerary marker. Cancer Genet Cytogenet. 1999;110(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  83. He M, Das K, Blacksin M, Benevenia J, Hameed M. A translocation involving the placental growth factor gene is identified in an epithelioid hemangioendothelioma. Cancer Genet Cytogenet. 2006;168(2):150–4.

    Article  CAS  PubMed  Google Scholar 

  84. Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ. Angiosarcoma. Lancet Oncol. 2010;11(10):983–91.

    Article  PubMed  Google Scholar 

  85. Gru AA, Becker N, Pfeifer JD. Angiosarcoma of the parotid gland with a t(12;22) translocation creating a EWSR1-ATF1 fusion: a diagnostic dilemma. J Clin Pathol. 2013;66(5):452–4.

    Article  PubMed  Google Scholar 

  86. Dunlap JB, Magenis RE, Davis C, Himoe E, Mansoor A. Cytogenetic analysis of a primary bone angiosarcoma. Cancer Genet Cytogenet. 2009;194(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  87. Mentzel T, Schildhaus HU, Palmedo G, Buttner R, Kutzner H. Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol. 2012;25(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  88. Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F, et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol. 2011;224(3):334–43.

    Article  CAS  PubMed  Google Scholar 

  89. Pansuriya TC, van Eijk R, d’Adamo P, van Ruler MA, Kuijjer ML, Oosting J, et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet. 2011;43(12):1256–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Arai M, Nobusawa S, Ikota H, Takemura S, Nakazato Y. Frequent IDH1/2 mutations in intracranial chondrosarcoma: a possible diagnostic clue for its differentiation from chordoma. Brain Tumor Pathol. 2012;29(4):201–6.

    Article  CAS  PubMed  Google Scholar 

  91. Kerr DA, Lopez HU, Deshpande V, Hornicek FJ, Duan Z, Zhang Y, et al. Molecular distinction of chondrosarcoma from chondroblastic osteosarcoma through IDH1/2 mutations. Am J Surg Pathol. 2013;37(6):787–95.

    Article  PubMed  Google Scholar 

  92. Tarpey PS, Behjati S, Cooke SL, Van Loo P, Wedge DC, Pillay N, et al. Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma. Nat Genet. 2013;45(8):923–6. PubMed PMID: 23770606.

    Google Scholar 

  93. Wang L, Motoi T, Khanin R, Olshen A, Mertens F, Bridge J, et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosom Cancer. 2012;51(2):127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nyquist KB, Panagopoulos I, Thorsen J, Haugom L, Gorunova L, Bjerkehagen B, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One. 2012;7(11):e49705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Panoutsakopoulos G, Pandis N, Kyriazoglou I, Gustafson P, Mertens F, Mandahl N. Recurrent t(16;17)(q22;p13) in aneurysmal bone cysts. Genes Chromosom Cancer. 1999;26(3):265–6.

    Article  CAS  PubMed  Google Scholar 

  96. Sciot R, Dorfman H, Brys P, Dal Cin P, De Wever I, Fletcher CD, et al. Cytogenetic-morphologic correlations in aneurysmal bone cyst, giant cell tumor of bone and combined lesions. A report from the CHAMP study group. Mod Pathol. 2000;13(11):1206–10.

    Article  CAS  PubMed  Google Scholar 

  97. Oliveira AM, Hsi BL, Weremowicz S, Rosenberg AE, Dal Cin P, Joseph N, et al. USP6 (Tre2) fusion oncogenes in aneurysmal bone cyst. Cancer Res. 2004;64(6):1920–3.

    Article  CAS  PubMed  Google Scholar 

  98. Dal Cin P, Kozakewich HP, Goumnerova L, Mankin HJ, Rosenberg AE, Fletcher JA. Variant translocations involving 16q22 and 17p13 in solid variant and extraosseous forms of aneurysmal bone cyst. Genes Chromosom Cancer. 2000;28(2):233–4.

    Article  CAS  PubMed  Google Scholar 

  99. Nielsen GP, Fletcher CD, Smith MA, Rybak L, Rosenberg AE. Soft tissue aneurysmal bone cyst: a clinicopathologic study of five cases. Am J Surg Pathol. 2002;26(1):64–9.

    Article  PubMed  Google Scholar 

  100. Oliveira AM, Perez-Atayde AR, Dal Cin P, Gebhardt MC, Chen CJ, Neff JR, et al. Aneurysmal bone cyst variant translocations upregulate USP6 transcription by promoter swapping with the ZNF9, COL1A1, TRAP150, and OMD genes. Oncogene. 2005;24(21):3419–26.

    Article  CAS  PubMed  Google Scholar 

  101. Yoshida A, Ushiku T, Motoi T, Shibata T, Beppu Y, Fukayama M, et al. Immunohistochemical analysis of MDM2 and CDK4 distinguishes low-grade osteosarcoma from benign mimics. Mod Pathol. 2010;23(9):1279–88.

    Article  CAS  PubMed  Google Scholar 

  102. Dujardin F, Binh MB, Bouvier C, Gomez-Brouchet A, Larousserie F, Muret A, et al. MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol. 2011;24(5):624–37.

    Article  CAS  PubMed  Google Scholar 

  103. Debelenko LV, McGregor LM, Shivakumar BR, Dorfman HD, Raimondi SC. A novel EWSR1-CREB3L1 fusion transcript in a case of small cell osteosarcoma. Genes Chromosom Cancer. 2011;50(12):1054–62.

    Article  CAS  PubMed  Google Scholar 

  104. Haldar M, Randall RL, Capecchi MR. Synovial sarcoma: from genetics to genetic-based animal modeling. Clin Orthop Relat Res. 2008;466(9):2156–67.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Alaggio R, Coffin CM, Vargas SO. Soft tissue tumors of uncertain origin. Pediatr Dev Pathol. 2012;15(1 Suppl):267–305.

    Article  PubMed  Google Scholar 

  106. Kempson RL, Fletcher CDM, Evans HL, Hendrickson MR, Sibley RK. Tumors of the soft tissues. 3rd ed. Washington, DC: Armed Forces Institute of Pathology; 2001.

    Google Scholar 

  107. Fisher C. Synovial sarcoma. Ann Diagn Pathol. 1998;2(6):401–21.

    Article  CAS  PubMed  Google Scholar 

  108. Fisher C. Synovial sarcoma: ultrastructural and immunohistochemical features of epithelial differentiation in monophasic and biphasic tumors. Hum Pathol. 1986;17(10):996–1008.

    Article  CAS  PubMed  Google Scholar 

  109. Fisher C. Soft tissue sarcomas with non-EWS translocations: molecular genetic features and pathologic and clinical correlations. Virchows Arch. 2010;456(2):153–66.

    Article  PubMed  Google Scholar 

  110. Foo WC, Cruise MW, Wick MR, Hornick JL. Immunohistochemical staining for TLE1 distinguishes synovial sarcoma from histologic mimics. Am J Clin Pathol. 2011;135(6):839–44.

    Article  PubMed  Google Scholar 

  111. Jagdis A, Rubin BP, Tubbs RR, Pacheco M, Nielsen TO. Prospective evaluation of TLE1 as a diagnostic immunohistochemical marker in synovial sarcoma. Am J Surg Pathol. 2009;33(12):1743–51.

    Article  PubMed  Google Scholar 

  112. Kosemehmetoglu K, Vrana JA, Folpe AL. TLE1 expression is not specific for synovial sarcoma: a whole section study of 163 soft tissue and bone neoplasms. Mod Pathol. 2009;22(7):872–8.

    Article  CAS  PubMed  Google Scholar 

  113. Ishida M, Tanaka S, Ohki M, Ohta T. Transcriptional co-activator activity of SYT is negatively regulated by BRM and Brg1. Genes Cells. 2004;9(5):419–28.

    Article  CAS  PubMed  Google Scholar 

  114. Gure AO, Wei IJ, Old LJ, Chen YT. The SSX gene family: characterization of 9 complete genes. Int J Cancer. 2002;101(5):448–53.

    Article  CAS  PubMed  Google Scholar 

  115. Smith HA, McNeel DG. The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clin Dev Immunol. 2010;2010:150591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Somers GR, Zielenska M, Abdullah S, Sherman C, Chan S, Thorner PS. Expression of MYCN in pediatric synovial sarcoma. Mod Pathol. 2007;20(7):734–41.

    Article  CAS  PubMed  Google Scholar 

  117. Nagai M, Tanaka S, Tsuda M, Endo S, Kato H, Sonobe H, et al. Analysis of transforming activity of human synovial sarcoma-associated chimeric protein SYT-SSX1 bound to chromatin remodeling factor hBRM/hSNF2 alpha. Proc Natl Acad Sci U S A. 2001;98(7):3843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Antonescu CR, Kawai A, Leung DH, Lonardo F, Woodruff JM, Healey JH, et al. Strong association of SYT-SSX fusion type and morphologic epithelial differentiation in synovial sarcoma. Diagn Mol Pathol. 2000;9(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  119. Guillou L, Benhattar J, Bonichon F, Gallagher G, Terrier P, Stauffer E, et al. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol. 2004;22(20):4040–50.

    Article  PubMed  Google Scholar 

  120. Tsuji K, Ishikawa Y, Imamura T. Technique for differentiating alveolar soft part sarcoma from other tumors in paraffin-embedded tissue: comparison of immunohistochemistry for TFE3 and CD147 and of reverse transcription polymerase chain reaction for ASPSCR1-TFE3 fusion transcript. Hum Pathol. 2012;43(3):356–63.

    Article  CAS  PubMed  Google Scholar 

  121. Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, et al. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20(1):48–57.

    Article  CAS  PubMed  Google Scholar 

  122. Williams A, Bartle G, Sumathi VP, Meis JM, Mangham DC, Grimer RJ, et al. Detection of ASPL/TFE3 fusion transcripts and the TFE3 antigen in formalin-fixed, paraffin-embedded tissue in a series of 18 cases of alveolar soft part sarcoma: useful diagnostic tools in cases with unusual histological features. Virchows Arch. 2011;458(3):291–300.

    Article  CAS  PubMed  Google Scholar 

  123. Hisaoka M, Ishida T, Kuo TT, Matsuyama A, Imamura T, Nishida K, et al. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32(3):452–60.

    Article  PubMed  Google Scholar 

  124. Reeves BR, Fletcher CD, Gusterson BA. Translocation t(12;22)(q13;q13) is a nonrandom rearrangement in clear cell sarcoma. Cancer Genet Cytogenet. 1992;64(2):101–3.

    Article  CAS  PubMed  Google Scholar 

  125. Zucman J, Delattre O, Desmaze C, Epstein AL, Stenman G, Speleman F, et al. EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts. Nat Genet. 1993;4(4):341–5.

    Article  CAS  PubMed  Google Scholar 

  126. Speleman F, Delattre O, Peter M, Hauben E, Van Roy N, Van Marck E. Malignant melanoma of the soft parts (clear-cell sarcoma): confirmation of EWS and ATF-1 gene fusion caused by a t(12;22) translocation. Mod Pathol. 1997;10(5):496–9.

    CAS  PubMed  Google Scholar 

  127. Hiraga H, Nojima T, Abe S, Yamashiro K, Yamawaki S, Kaneda K, et al. Establishment of a new continuous clear cell sarcoma cell line. Morphological and cytogenetic characterization and detection of chimaeric EWS/ATF-1 transcripts. Virchows Arch. 1997;431(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  128. Antonescu CR, Nafa K, Segal NH, Dal Cin P, Ladanyi M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma—association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12(18):5356–62.

    Article  CAS  PubMed  Google Scholar 

  129. Wang WL, Mayordomo E, Zhang W, Hernandez VS, Tuvin D, Garcia L, et al. Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol. 2009;22(9):1201–9.

    Article  CAS  PubMed  Google Scholar 

  130. Coindre JM, Hostein I, Terrier P, Bouvier-Labit C, Collin F, Michels JJ, et al. Diagnosis of clear cell sarcoma by real-time reverse transcriptase-polymerase chain reaction analysis of paraffin embedded tissues: clinicopathologic and molecular analysis of 44 patients from the French sarcoma group. Cancer. 2006;107(5):1055–64.

    Article  CAS  PubMed  Google Scholar 

  131. Yamada K, Ohno T, Aoki H, Semi K, Watanabe A, Moritake H, et al. EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice. J Clin Invest. 2013;123(2):600–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Aigner T, Oliveira AM, Nascimento AG. Extraskeletal myxoid chondrosarcomas do not show a chondrocytic phenotype. Mod Pathol. 2004;17(2):214–21.

    Article  PubMed  Google Scholar 

  133. Demicco EG, Wang WL, Madewell JE, Huang D, Bui MM, Bridge JA, et al. Osseous myxochondroid sarcoma: a detailed study of 5 cases of extraskeletal myxoid chondrosarcoma of the bone. Am J Surg Pathol. 2013;37(5):752–62.

    Article  PubMed  Google Scholar 

  134. Kawaguchi S, Wada T, Nagoya S, Ikeda T, Isu K, Yamashiro K, et al. Extraskeletal myxoid chondrosarcoma: a Multi-Institutional Study of 42 Cases in Japan. Cancer. 2003;97(5):1285–92.

    Article  PubMed  Google Scholar 

  135. Drilon AD, Popat S, Bhuchar G, D’Adamo DR, Keohan ML, Fisher C, et al. Extraskeletal myxoid chondrosarcoma: a retrospective review from 2 referral centers emphasizing long-term outcomes with surgery and chemotherapy. Cancer. 2008;113(12):3364–71.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Goh YW, Spagnolo DV, Platten M, Caterina P, Fisher C, Oliveira AM, et al. Extraskeletal myxoid chondrosarcoma: a light microscopic, immunohistochemical, ultrastructural and immuno-ultrastructural study indicating neuroendocrine differentiation. Histopathology. 2001;39(5):514–24.

    Article  CAS  PubMed  Google Scholar 

  137. Kohashi K, Oda Y, Yamamoto H, Tamiya S, Oshiro Y, Izumi T, et al. SMARCB1/INI1 protein expression in round cell soft tissue sarcomas associated with chromosomal translocations involving EWS: a special reference to SMARCB1/INI1 negative variant extraskeletal myxoid chondrosarcoma. Am J Surg Pathol. 2008;32(8):1168–74.

    Article  PubMed  Google Scholar 

  138. Turc-Carel C, Dal Cin P, Rao U, Karakousis C, Sandberg AA. Recurrent breakpoints at 9q31 and 22q12.2 in extraskeletal myxoid chondrosarcoma. Cancer Genet Cytogenet. 1988;30(1):145–50.

    Article  CAS  PubMed  Google Scholar 

  139. Wang WL, Mayordomo E, Czerniak BA, Abruzzo LV, Dal Cin P, Araujo DM, et al. Fluorescence in situ hybridization is a useful ancillary diagnostic tool for extraskeletal myxoid chondrosarcoma. Mod Pathol. 2008;21(11):1303–10.

    Article  CAS  PubMed  Google Scholar 

  140. Bjerkehagen B, Dietrich C, Reed W, Micci F, Saeter G, Berner A, et al. Extraskeletal myxoid chondrosarcoma: multimodal diagnosis and identification of a new cytogenetic subgroup characterized by t(9;17)(q22;q11). Virchows Arch. 1999;435(5):524–30.

    Article  CAS  PubMed  Google Scholar 

  141. Sjogren H, Wedell B, Meis-Kindblom JM, Kindblom LG, Stenman G. Fusion of the NH2-terminal domain of the basic helix-loop-helix protein TCF12 to TEC in extraskeletal myxoid chondrosarcoma with translocation t(9;15)(q22;q21). Cancer Res. 2000;60(24):6832–5.

    CAS  PubMed  Google Scholar 

  142. Sjogren H, Meis-Kindblom JM, Orndal C, Bergh P, Ptaszynski K, Aman P, et al. Studies on the molecular pathogenesis of extraskeletal myxoid chondrosarcoma-cytogenetic, molecular genetic, and cDNA microarray analyses. Am J Pathol. 2003;162(3):781–92.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Panagopoulos I, Mertens F, Isaksson M, Domanski HA, Brosjo O, Heim S, et al. Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosom Cancer. 2002;35(4):340–52.

    Article  CAS  PubMed  Google Scholar 

  144. Vergara-Lluri ME, Stohr BA, Puligandla B, Brenholz P, Horvai AE. A novel sarcoma with dual differentiation: clinicopathologic and molecular characterization of a combined synovial sarcoma and extraskeletal myxoid chondrosarcoma. Am J Surg Pathol. 2012;36(7):1093–8.

    Article  PubMed  Google Scholar 

  145. Neuville A, Ranchere-Vince D, Dei Tos AP, Cristina Montesco M, Hostein I, Toffolatti L, et al. Impact of molecular analysis on the final sarcoma diagnosis: a study on 763 cases collected during a European Epidemiological Study. Am J Surg Pathol. 2013;37(8):1259–68.

    Article  PubMed  Google Scholar 

  146. Sweeney RT, Zhang B, Zhu SX, Varma S, Smith KS, Montgomery SB, et al. Desktop transcriptome sequencing from archival tissue to identify clinically relevant translocations. Am J Surg Pathol. 2013;37(6):796–803.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dylla L, Jedlicka P. Growth-promoting role of the miR-106a 363 cluster in Ewing sarcoma. PLoS One. 2013;8(4):e63032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marchetti A, Del Grammastro M, Filice G, Felicioni L, Rossi G, Graziano P, et al. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications. PLoS One. 2012;7(7):e42164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Beck AH, Lee CH, Witten DM, Gleason BC, Edris B, Espinosa I, et al. Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene. 2010;29(6):845–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Italiano A, Lagarde P, Brulard C, Terrier P, Lae M, Marques B, et al. Genetic profiling identifies two classes of soft-tissue leiomyosarcomas with distinct clinical characteristics. Clin Cancer Res. 2013;19(5):1190–6.

    Article  PubMed  Google Scholar 

  151. Chibon F, Lagarde P, Salas S, Perot G, Brouste V, Tirode F, et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010;16(7):781–7.

    Article  CAS  PubMed  Google Scholar 

  152. Buttitta F, Felicioni L, Del Grammastro M, Filice G, Di Lorito A, Malatesta S, et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing. Clin Cancer Res. 2013;19(3):691–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan C. Dickson M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dickson, B.C., Somers, G.R., Kandel, R.A. (2014). Molecular Testing in Bone and Soft Tissue Tumors. In: Yousef, G., Jothy, S. (eds) Molecular Testing in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8050-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8050-2_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8049-6

  • Online ISBN: 978-1-4899-8050-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics