Skip to main content

Boza, a Traditional Cereal-Based Fermented Beverage: A Rich Source of Probiotics and Bacteriocin-Producing Lactic Acid Bacteria

Part of the Integrating Food Science and Engineering Knowledge Into the Food Chain book series (ISEKI-Food,volume 12)

Abstract

The concept of probiotic foods has gained significant interest since its introduction to clinical nutrition and food science during the 1980s. Probiotic bacteria play an important role in reducing symptoms related to lactose intolerance and irritable bowel syndrome; may prevent diarrhea, colon cancer, and allergies; and may even decrease serum cholesterol levels. Most probiotic foods are milk based, although many cereals with added probiotic cultures are appearing on the market. Cereal has a high nutritional value (vitamins, proteins, dietary fiber, energy, and minerals) and may serve as excellent delivery vector for the probiotic lactic acid bacteria to the consumers.

Lactic acid bacteria produce different antimicrobial compounds, including bacteriocins, lactic acid, hydrogen peroxide, benzoic acid, fatty acids, diacetyl, and other low molecular weight compounds. Bacteriocinogenic probiotic bacteria in cereal-based fermented foods could be beneficial when used as starter cultures, as they may prolong the shelf life of the products and provide the consumer with a healthy dietary component at a considerable low cost.

Traditional fermented food products need to be reevaluated in view on the potential source of probiotic LAB and a valuable source of their delivery to the humans. For centuries traditional medicine proved that these products have health benefits to the consumers, and modern medicine recommended them as accompanying treatment for several diseases.

Keywords

  • Lactic acid bacteria (LAB)
  • Cereals
  • Probiotic
  • Boza
  • Food quality and safety

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4899-7662-8_12
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4899-7662-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 12.1

References

  • Agerbck M, Gerdes LU, Richelsen B (1995) Hypocholesterolaemic effect of a new fermented milk product in healthy middle-aged men. Eur J Clin Nutr 49:346–352

    Google Scholar 

  • Ahrné S, Nobaek S, Jeppsson B, Adlerberth I, Wold EE, Molin G (1998) The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85:88–94

    CrossRef  Google Scholar 

  • Angelov A, Gotcheva V, Kuncheva R, Hristozova T (2006) Development of a new oat-based probiotic drink. Int J Food Microbiol 112:75–80

    CAS  CrossRef  Google Scholar 

  • Arici M, Daglioglu O (2002) Boza: a lactic acid fermented cereal beverage as a traditional Turkish food. Food Res Int 18:39–48

    CAS  CrossRef  Google Scholar 

  • Axelsson L (1990) Lactobacillus reuteri, a member of the gut bacterial flora. Ph.D. thesis, Department Microbiology, University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Beukes EM, Bester BH, Mostert JF (2001) The microbiology of South African traditional fermented milks. Int J Food Microbiol 63:189–197

    CAS  CrossRef  Google Scholar 

  • Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73:399–405

    Google Scholar 

  • Biet F, Berjeaud JM, Worobo RW, Cenatiempo Y, Fremaux C (1998) Heterologous expression of the bacteriocin mesentericin Y105 using the dedicated transport system and the general secretion pathway. Microbiology 144:2845–2854

    CAS  CrossRef  Google Scholar 

  • Bijlani RL (1985) Dietary fibre: consensus and controversy. Prog Food Nutr Sci 9:343–393

    CAS  Google Scholar 

  • Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36:527–543

    CAS  CrossRef  Google Scholar 

  • Blom H, Mörtvedt C (1991) Anti-microbial substances produced by food associated microorganisms. Biochem Soc Trans 19:694–698

    CAS  CrossRef  Google Scholar 

  • Böcker G, Stolz P, Hammes WP (1995) Neue Erkenntnisse zum Ökosystem Sauerteig und qur Physiologie der sauerteigtypischen Stämme Lactobacillus sanfrancisco und Lactobacillus pontis. Getreide, Mehl und Brot 49:370–374

    Google Scholar 

  • Botes A, Todorov SD, Von Mollendorff JW, Botha A, Dicks LMT (2007) Identification of lactic acid bacteria and yeast in boza. Process Biochem 42:267–270

    CAS  CrossRef  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    CAS  CrossRef  Google Scholar 

  • Chandan RC (1999) Enhancing market value of milk by adding cultures. J Dairy Sci 82:2245–2256

    CAS  CrossRef  Google Scholar 

  • Charalampopoulos D, Wang R, Pandiella SS, Webb C (2002) Application of cereals and cereal components in functional foods: a review. Int J Food Microbiol 79:131–141

    CAS  CrossRef  Google Scholar 

  • Chavan JK, Kadam SS (1989) Nutrition improvement of cereals by sprouting. Crit Rev Food Sci Nutr 28:401–437

    CAS  CrossRef  Google Scholar 

  • Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:82–100

    CAS  Google Scholar 

  • Chen G, Russell JB (1989) Transport of glutamine by Streptococcus bovis and conversion of glutamine to pyroglutamic acid and ammonia. J Bacteriol 171:2981–2985

    CAS  Google Scholar 

  • Chen Y, Ludescher RD, Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments of phospholipid vesicles. Appl Environ Microbiol 63:4770–4777

    CAS  Google Scholar 

  • Chikindas ML, Venema K, Ledeboer AM, Venema G, Kok J (1995) Expression of lactococcin a and pediocin PA-1 in heterologous hosts. Lett Appl Microbiol 21:183–189

    CAS  CrossRef  Google Scholar 

  • Chiu CH, Lu TY, Tseng YY (2005) The effects of Lactobacillus fermented milk on lipid metabolism in hamsters fed on high cholesterol diet. Appl Microbiol Physiol 71:238–245

    CrossRef  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    CAS  CrossRef  Google Scholar 

  • Cogan TM, Hill C (1993) Cheese starter cultures. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, 2nd edn. Chapman and Hall, London, pp 193–255

    CrossRef  Google Scholar 

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 46:269–280

    CAS  CrossRef  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Staton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    CAS  CrossRef  Google Scholar 

  • Crittenden R, Karppinen S, Ojanen S, Tenkanen M, Fagerström R, Mättö J, Saarela M, Mattila-Sandholm T, Ja Poutanen K (2002) In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J Sci Food Agric 82:781–789

    CAS  CrossRef  Google Scholar 

  • Davidson PM (1997) Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers. ASM Press, Washington, pp 520–556

    Google Scholar 

  • De Rodas BZ, Gilliland SE, Maxwell CV (1996) Hypocholesterolemic action of Lactobacillus acidophilus ATCC43121 and calcium in swine with hypercholesterolemia induced by diet. J Dairy Sci 79:2121–2128

    CrossRef  Google Scholar 

  • De Vrese M, Winkler P, Rautenberg P, Harder T, Noah C, Laue C, Ott S, Hampe J, Schreiber S, Heller K, Schrezenmeir J (2005) Effect of lactobacillus gasseri PA 16/8, bifidobacterium longum SP 07/3, B bifidum MF 20/5 on common cold episodes: a double blind randomized, controlled trial. Clinical Nutrition 24:481–491

    CrossRef  Google Scholar 

  • De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    CrossRef  Google Scholar 

  • De Vuyst L, Marshall VM (2001) First international symposium on exopolysaccharides form lactic acid bacteria: from fundamentals to applications. Int Dairy J 11:659–768

    CrossRef  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Antimicrobial potential of lactic acid bacteria. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria. Blackie Academic and Professional, London, pp 91–142

    CrossRef  Google Scholar 

  • De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707

    CrossRef  Google Scholar 

  • De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68:6059–6069

    CrossRef  CAS  Google Scholar 

  • Deegan LH, Cotter PD, Hill C, Ross P (2006) Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J 16:1058–1071

    CAS  CrossRef  Google Scholar 

  • Eklund T (1989) Organic acids and esters. In: Gould GW (ed) Mechanisms of action of food preservation procedures. Elsevier Applied Science, London, pp 161–200

    Google Scholar 

  • Ennahar S, Sashihara T, Sonomoto K, Ishizaki A (2000) Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106

    CAS  CrossRef  Google Scholar 

  • FAO/WHO (2002). Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. (London Ontario, Canada), pp. 1–11.

    Google Scholar 

  • Fleury Y, Abdel Dayem M, Montagne JJ, Chaboisseau E, Le Caer JP, Nicolas P, Delfour A (1996) Covalent structure, synthesis, and structure-function studies of mesentericin Y 10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides. J Biol Chem 271:14421–14429

    CAS  CrossRef  Google Scholar 

  • Fontaine EA, Claydon E, Tayler-Robinson D (1996) Lactobacilli from women with or without bacterial vaginosis and observations on the significance of hydrogen peroxide. Microb Ecol Health Dis 9:135–141

    CrossRef  Google Scholar 

  • Fooks LJ, Fuller R, Gibson GR (1999) Prebiotics, probiotics and human gut microbiology. Int Dairy J 9:53–61

    CrossRef  Google Scholar 

  • Fox PF, Lucey JA, Cogan TM (1993) “Cheese”: an overview. In: Fox PF (ed) Cheese: chemistry, physics and microbiology, 2nd edn. Chapman and Hall, London, pp 1–36

    CrossRef  Google Scholar 

  • Fremaux C, Héchard Y, Cenatiempo Y (1995) Mesentericin Y105 gene clusters in Leuconostoc mesenteroides Y105. Microbiology 141:1637–1645

    CAS  CrossRef  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. A review. J Appl Bacteriol 66:365–378

    CAS  CrossRef  Google Scholar 

  • Fuller R, Gibson GR (1997) Modification of the intestinal microflora using probiotics and probiotics. Scand J Gastroenterol 32:28–31

    CrossRef  Google Scholar 

  • Gallaher DD (2002) Dietary fiber and its physiological effects. In: Schmidt M, Labuza TP (eds) Essentials of functional foods. Aspen Publishers, Gaithersburg

    Google Scholar 

  • Geisen R, Holzapfel WH (1996) Genetically modified starter and protective cultures. Int J Food Microbiol 30:315–324

    CAS  CrossRef  Google Scholar 

  • Genc M, Zorba M, Ova G (2002) Determination of rheological properties of boza by using physical and sensory analysis. J Food Eng 52:95–98

    CrossRef  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of probiotics. J Nutr 125:1401–1412

    CAS  Google Scholar 

  • Gilliland SE (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol Rev 87:175–188

    CrossRef  Google Scholar 

  • Goldin BR (1998) Health benefits of probiotics. Br J Nutr 80:203–207

    Google Scholar 

  • Gotcheva V, Pandiella SS, Angelov A, Roshkova ZG, Webb C (2000) Microflora identification of the Bulgarian cereal-based fermented beverage boza. Process Biochem 36:127–130

    CAS  CrossRef  Google Scholar 

  • Gotcheva V, Pandiella SS, Angelov A, Roshkova Z, Webb C (2001) Monitoring the fermentation of the traditional Bulgarian beverage boza. Int J Food Sci Technol 36:129–134

    CAS  CrossRef  Google Scholar 

  • Hamdan IY, Mikolajcik EM (1974) Acidolin: an antibiotic produced by Lactobacillus acidophilus. J Antibiot 27:631–636

    CAS  CrossRef  Google Scholar 

  • Hammes WP, Vogel RF (1990) Gentechnik zur Modifizierung von Starterorganismen. Lebensmitteltechnik 1–2:24–32

    Google Scholar 

  • Hancioglu O, Karapinar M (1997) Microflora of boza, a traditional fermented Turkish beverage. Int J Food Microbiol 35:271–274

    CAS  CrossRef  Google Scholar 

  • Harris LJ (1998) The microbiology of vegetable fermentations. In: Wood BJB (ed) Microbiology of fermented foods, vol 1. Blackie Academic and Professional, London, pp 45–72

    CrossRef  Google Scholar 

  • Hébert EM, Raya RR, Tailliez P, De Giori GS (2000) Characterization of natural isolates of Lactobacillus strains to be used as starter cultures in dairy fermentation. Int J Food Microbiol 59:19–27

    CrossRef  Google Scholar 

  • Heller K (2001) Prebiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374–379

    Google Scholar 

  • Hernandez-Mendoza A, Garcia HS, Steele JL (2009) Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food Chem Toxicol 47(6):1064–1068

    CAS  CrossRef  Google Scholar 

  • Holzapfel HW (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75:197–212

    CAS  CrossRef  Google Scholar 

  • Horn N, Martínez MI, Martínez JM, Hernández PE, Gasson MJ, Rodríguez JM, Dodd HM (1998) Production of pediocin PA-1 by Lactococcus lactis using the lactococcin a secretory apparatus. Appl Environ Microbiol 64:818–823

    CAS  Google Scholar 

  • Hoseney RC (1992) Principles of cereal science and technology. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • Hugenholtz J, Kleerebezem M (1999) Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr Opin Biotechnol 10:492–497

    CAS  CrossRef  Google Scholar 

  • Huttunen E, Noro K, Yang Z (1995) Purification and identification of antimicrobial substances produced by two Lactobacillus casei strains. Int Dairy J 5:503–513

    CAS  CrossRef  Google Scholar 

  • Isolauri E, Juntunen M, Rautanen T, Sillanaukee P, Koivula T (1991) A human Lactobacillus strain (Lactobacillus casei sp. Strain GG) promotes recovery from acute diarrhea in children. Pediatrics 88:90–97

    CAS  Google Scholar 

  • Jack RW, Tagg JR, Ray B (1994) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    Google Scholar 

  • Jahreis G, Vogelsang H, Kiessling G, Schubert R, Bunte C, Hammes WP (2002) Influence of probiotic sausage (Lactobacillus paracasei) on blood lipids and immunological parameters of healthy volunteers. Food Res Int 35:133–138

    CAS  CrossRef  Google Scholar 

  • Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, Poutanen K (1998) Oat-beta-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Appl Microbiol Biotechnol 49:175–181

    CAS  CrossRef  Google Scholar 

  • Jay JM (1982) Antimicrobial properties of diacetyl. Appl Environ Microbiol 44:525–532

    CAS  Google Scholar 

  • Johansson M, Molin G, Jeppsson B, Nobaek S, Ahrné S (1993) Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 59:15–20

    CAS  Google Scholar 

  • Kabadjova P, Gotcheva I, Ivanova I, Dousset X (2000) Investigation of bacteriocin activity of lactic acid bacteria isolated from boza. Biotechnol Biotechnol Equip 14:56–59

    CAS  CrossRef  Google Scholar 

  • Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357:1076–1079

    CAS  CrossRef  Google Scholar 

  • Karppinen S (2003) Dietary fibre components of rye bran and their fermentation in vitro. Ph.D. thesis, University of Helsinki

    Google Scholar 

  • King ADJ, Nagel CW (1975) Influence of carbon dioxide on the growth of spoilage bacteria. Lebensm Wiss Technol 40:362–366

    CAS  Google Scholar 

  • Kingamkono RR, Sjögren E, Svanberg U (1998) Inhibition of enterotoxin production by, and growth of enteropathogens in a lactic acid-fermenting cereal gruel. World J Microbiol Biotechnol 14:661–667

    CAS  CrossRef  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    CAS  CrossRef  Google Scholar 

  • Klaenhammer TR, Fitzgerald GF (1994) Bacteriophage and bacteriophage resistance. In: Gasson MJ, De Vos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic and Professional, Glasgow, pp 106–168

    CrossRef  Google Scholar 

  • Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Food Sci Technol 15:67–78

    CAS  CrossRef  Google Scholar 

  • Liévin-Le MV, Amsellem R, Servin AL, Coconnier M-H (2002) Lactobacillus acidophilus (strain LB) from the resident adult human gastrointestinal microflora exerts activity against brush border damage promoted by a diarrheagenic Escherichia coli in human enterocyte-like cells. Gut 50:803–811

    CrossRef  Google Scholar 

  • Lindgren SE, Dobrogosz WJ (1990) Antagonistic activities of lactic acid bacteria in food and feed fermentations. FEMS Microbiol Rev 87:149–163

    CAS  CrossRef  Google Scholar 

  • Liong MT, Shah NP (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of Lactobacilli strains. Int Dairy J 15:391–398

    CAS  CrossRef  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  Google Scholar 

  • Mann GV, Spoerry A (1974) Studies of a surfactant and cholesterolemia in the Masai. Am J Clin Nutr 27:464–469

    CAS  Google Scholar 

  • Marklinder I, Lonner C (1992) Fermentation properties of intestinal strains of Lactobacillus, of a sour dough and of a yoghurt starter culture in an oat-based nutritive solution. Food Microbiol 9:197–205

    CAS  CrossRef  Google Scholar 

  • Martínez JM, Kok J, Sanders JW, Hernández PE (2000) Heterologous co-production of enterocin A and pediocin PA-1 by Lactococcus lactis: detection by specific peptide-directed antibodies. Appl Environ Microbiol 66:3543–3549

    CrossRef  Google Scholar 

  • Mattila-Sandholm T, Matto J, Saarela M (1999) Lactic acid bacteria with health claims—interactions and interference with gastrointestinal flora. Int Dairy J 9:25–35

    CrossRef  Google Scholar 

  • McCormick JK, Worobo RW, Stiles ME (1996) Expression of the antimicrobial peptide carnobacteriocin B2 a signal peptide-dependent general secretory pathway. Appl Environ Microbiol 62:4095–4099

    CAS  Google Scholar 

  • McKay LL, Baldwin KA (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 87:3–14

    CAS  CrossRef  Google Scholar 

  • Medellin-Peña MJ, Wang H, Johnson R, Anand S, Griffiths MW (2007) Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl Environ Microbiol 73:4259–4267

    CrossRef  CAS  Google Scholar 

  • Michail S, Abernathy F (2002) Lactobacillus plantarum reduces the in vitro secretary response of intestinal epithelial cells to enteropathogenic Escherichia coli infection. J Pediatr Gastroenterol Nutr 35:350–355

    CAS  CrossRef  Google Scholar 

  • Miller KW, Schamber R, Chen YL, Ray B (1998) Production of active chimeric pediocin AcH in Escherichia coli in the absence of processing and secretion genes from the Pediococcus pap operon. Appl Environ Microbiol 64:14–20

    CAS  Google Scholar 

  • Mogensen G (1993) Starter cultures. In: Smith J (ed) Technology of reduced-additive foods. Blackie Academic and Professional, London, pp 1–25

    CrossRef  Google Scholar 

  • Molin G (2001) Probiotics in foods not containing milk or milk constituents, with special reference to Lactobacillus plantarum 299v. Am J Clin Nutr 73:380–385

    Google Scholar 

  • Mollet B (1996) New technologies in fermented milk. Cerevisia 21:63–65

    CAS  Google Scholar 

  • Montville TJ, Chen Y (1998) Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl Microbiol Biotechnol 50:511–519

    CAS  CrossRef  Google Scholar 

  • Montville TJ, Winkowski K (1997) Biologically based preservation systems and probiotic bacteria. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology, fundamentals and frontiers. ASM Press, Washington, pp 557–576

    Google Scholar 

  • Motlagh AM, Johnson MC, Ray B (1991) Viability loss of foodborne pathogens by starter culture metabolites. J Food Prot 54:873–878

    CAS  Google Scholar 

  • Nagy E, Peterson M, Mardh P-A (1991) Antibiosis between bacteria isolated from the vagina of women with and without signs of bacterial vaginosis. Acta Pathol Microbiol Immunol Scand 99:739–744

    CAS  CrossRef  Google Scholar 

  • Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    CAS  CrossRef  Google Scholar 

  • Nikolov DK (1993) Morphological characteristics and structure of cereals, technology of grain storage. Ph.D. thesis, Higher Institute of Food and Flavour Industries, Plovdiv

    Google Scholar 

  • O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EMM (2005) Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551

    CrossRef  Google Scholar 

  • O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604

    CrossRef  Google Scholar 

  • Ouwehand A, Vesterlund S (2004) Antimicrobial components from lactic acid bacteria. In: Salminen S, Von Wright A, Ouwehand A (eds) Lactic acid bacteria: microbiological and functional aspects, third edition. Marcel Dekker, New York, pp 375–395

    Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499

    CAS  CrossRef  Google Scholar 

  • Parassol N, Freitas M, Thoreux K, Dalmasso G, Bourdet-Sicard R, Rampal P (2005) Lactobacillus casei DN-114 001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Res Microbiol 156:256–262

    CAS  CrossRef  Google Scholar 

  • Pederson CS (1971) Microbiology in food fermentations. AVI Publishing, Westport, p 283

    Google Scholar 

  • Prescott SL, Björkstén B (2007) Probiotics for the prevention or treatment of allergic diseases. J Allergy Clin Immunol 120:255–262

    CAS  CrossRef  Google Scholar 

  • Quadri LEN, Yan LZ, Stiles ME, Vederas JC (1997) Effect of amino acid substitutions on the activity of carnobacteriocin B2. J Biol Chem 272:3384–3388

    CAS  CrossRef  Google Scholar 

  • Reddy GV, Shahani KM (1971) Isolation of an antibiotic from Lactobacillus bulgaricus. J Dairy Sci 54:748–752

    CrossRef  Google Scholar 

  • Reddy GV, Shahani KM, Friend BA, Chandan RC (1983) Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus III: production and partial purification of bulgarican from Lactobacillus bulgaricus. Cultured Dairy Prod J 18:15–19

    CAS  Google Scholar 

  • Reid G, Burton J (2002) Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect 4:319–324

    CrossRef  Google Scholar 

  • Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997

    CAS  CrossRef  Google Scholar 

  • Richard C, Canon R, Naghmouchi K, Bertrand D, Prévost H, Drider D (2006) Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food Microbiol 23:175–183

    CAS  CrossRef  Google Scholar 

  • Rodríguez JM, Martínez MI, Horn N, Dodd HM (2003) Heterologous production of bacteriocins by lactic acid bacteria. Int J Food Microbiol 80:101–116

    CrossRef  Google Scholar 

  • Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396–402

    Google Scholar 

  • Ross P, Stanton C, Hill C, Fitzgerald GF, Coffey A (2000) Novel cultures for cheese improvement. Trends Food Sci Technol 11:96–104

    CAS  CrossRef  Google Scholar 

  • Ruiz-Barba JL, Cathcart DP, Warner PJ, Jiménez-Diaz R (1994) Use of Lactobacillus plantarum LPCO10, a bacteriocin producer, as a starter culture in Spanish-style green olive fermentations. Appl Environ Microbiol 60:2059–2064

    CAS  Google Scholar 

  • Salminen S, Isolauri E, Salminen E (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek 70:347–358

    CAS  CrossRef  Google Scholar 

  • Salminen S, Deighton MA, Benno Y, Gorbach SL (1998) Lactic acid bacteria in health and disease. In: Salminen S, Wright A (eds) Lactic acid bacteria: microbiology and functional aspects. Marcel Dekker, New York, pp 211–253

    Google Scholar 

  • Salovaara H (1996) The time of cereal-based functional foods is here: introducing Yosa®, a vellie. In: Proceedings of the 26th Nordic Cereal Congress, Haugesund, 12–15 May

    Google Scholar 

  • Salovaara H (2004) Lactic acid bacteria in cereal-based products. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria, microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 431–452

    Google Scholar 

  • Salovaara H, Simonson L (2003) Fermented cereal-based functional foods, Handbook of fermented food and beverages. Marcel Dekker, New York

    Google Scholar 

  • Shahani KM, Vakil JR, Kilara A (1977a) Antibiotic acidophilin and the process for preparing the same. U.S. Patent 3689640

    Google Scholar 

  • Shahani KM, Vakil JR, Kilara A (1977b) Natural antibiotic activity of Lactobacillus acidophilus and bulgaricus. II Isolation of acidophilin from L acidophilus. Cultured Dairy Prod J 12:12–19

    Google Scholar 

  • Sharma A, Kapoor AC (1996) Levels of antinutritional factors in pearl millet as affected by processing treatments and various types of fermentation. Plant Foods Hum Nutr 49:241–252

    CAS  CrossRef  Google Scholar 

  • Sherman PM, Johnson-Henry KC, Yeung HP, Ngo PS, Goulet J, Tompkins TA (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73:5183–5188

    CAS  CrossRef  Google Scholar 

  • Sheu CW, Konings WN, Freese E (1972) Effects of acetate and other short-chain fatty acids on sugars and amino acid uptake of Bacillus subtilis. J Bacteriol 111:525–530

    CAS  Google Scholar 

  • Shortt C (1999) The probiotic century: historical and current perspectives. Trends Food Sci Technol 10:411–417

    CAS  CrossRef  Google Scholar 

  • Silva M, Jacobus NV, Deneke C, Gorbach SL (1987) Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 31:1231–1233

    CAS  CrossRef  Google Scholar 

  • Singh UP, Tyagi P, Upreti S (2007) Manganese complexes as models for manganese-containing pseudocatalase enzymes: Synthesis, structural and catalytic activity studies. Polyhedron 26:3625–3632

    CAS  CrossRef  Google Scholar 

  • Stark A, Madar Z (1994) Dietary fiber. In: Goldberg I (ed) Functional foods: designer foods, pharmafoods, nutraceuticals. Chapman and Hall, New York, pp 183–201

    CrossRef  Google Scholar 

  • Thomas LV, Clarkson MR, Delves-Broughton FD (2002) Nisin. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton, pp 463–524

    Google Scholar 

  • Todorov SD (2009) Bacteriocins from Lactobacillus plantarum—production, genetic organization and mode of action. Braz J Microbiol 40:209–221

    CAS  CrossRef  Google Scholar 

  • Todorov SD, Dicks LMT (2004) Characterization of mesentericin ST99, a bacteriocin produced by Leuconostoc mesenteroides subsp. dextranicum ST99 isolated from boza. J Ind Microbiol Biotechnol 31:323–329

    CAS  CrossRef  Google Scholar 

  • Todorov SD, Dicks LMT (2005a) Effect of growth medium on bacteriocin production by Lactobacillus plantarum ST194BZ, a strain isolated from boza. Food Technol Biotechnol 43:165–173

    CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2005b) Pediocin ST18, an anti-listerial bacteriocin produced by Pediococcus pentosaceus ST18 isolated from boza, a traditional cereal beverage from Bulgaria. Process Biochem 40:365–370

    CAS  CrossRef  Google Scholar 

  • Todorov SD, Dicks LMT (2006a) Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol Res 161:102–108

    CAS  CrossRef  Google Scholar 

  • Todorov SD, Dicks LMT (2006b) Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria. Comparison of the bacteriocins. Process Biochem 41:11–19

    CAS  CrossRef  Google Scholar 

  • Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents 25:508–513

    CAS  CrossRef  Google Scholar 

  • Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104:465–477

    CAS  Google Scholar 

  • Vallor AC, Antonio MAD, Hawse SE, Hillier SL (2001) Factors associated with acquisition of, or persistent colonization by, vaginal lactobacilli: role of hydrogen peroxide production. J Infect Dis 184:1431–1436

    CAS  CrossRef  Google Scholar 

  • Venema G, Kok J, Sinderen D (1999) From DNA sequences to application: possibilities and complications. Antonie Van Leeuwenhoek 76:3–23

    CAS  CrossRef  Google Scholar 

  • Verellen LJT, Bruggeman G, Van Reenen CA, Dicks LMT, Vandamme EJ (1998) Fermentation optimization of Plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423. J Ferment Bioeng 86:174–179

    CAS  CrossRef  Google Scholar 

  • Vogel RF, Knorr R, Muller MRA, Steudel U, Gänzle MG, Ehrmann MA (1999) Non-diary lactic fermentations: the cereal world. Antonie Van Leeuwenhoek 76:403–411

    CAS  CrossRef  Google Scholar 

  • Von Mollendorff JW, Todorov SD, Dicks LMT (2006) Comparison of bacteriocins produced by lactic-acid bacteria isolated from boza, a cereal-based fermented beverage from the Balkan peninsula. Curr Microbiol 53:209–216

    CrossRef  CAS  Google Scholar 

  • Wachsmann MB, Castilla V, de Ruiz Holgado AP, de Torrez RA, Sesma F, Coto FE (2003) Enterocin CRL35 inhibits late stages of HSV-1 and HSV-2 replication in vitro. Antiviral Res 58:17–24

    CrossRef  CAS  Google Scholar 

  • Weerkamp AH, Klijn N, Neeter R, Smit G (1996) Properties of mesophilic lactic acid bacteria from raw milk and naturally fermented raw milk products. Neth Milk Dairy J 50:319–332

    Google Scholar 

  • Wellock IJ, Fortomaris PD, Houdijk JG, Wiseman J, Kyriazakis I (2009) The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli. Br J Nutr 99:520–530

    Google Scholar 

  • Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    CAS  CrossRef  Google Scholar 

  • Wood PJ, Beer MU (1998) Functional oat products. In: Mazza G (ed) Functional foods: biochemical and processing aspect. Technomic Publishing, Lancaster, pp 1–29

    Google Scholar 

  • Wrick KL (1994) The potential role of functional foods in medicine and public health. In: Goldberg I (ed) Functional foods: designer foods, Pharmafoods, nutraceuticals. Chapman and Hall, New York, pp 480–494

    CrossRef  Google Scholar 

  • Zorba M, Hancioglu O, Genc M, Karapinar M, Ova G (2003) The use of starter cultures in the fermentation of boza, a traditional Turkish beverage. Process Biochem 38:1405–1411

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Research Foundation (NRF) of South Africa and bilateral grant NRF (South Africa)/CNRS (France) for research on bacteriocin-producing LAB from traditional fermented products. Dr. Svetoslav D. Todorov received postdoctoral grants from the Claude Leon Foundation, Cape Town, South Africa, and CAPES, Brasilia, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetoslav D. Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

von Mollendorff, J.W., Vaz-Velho, M., Todorov, S.D. (2016). Boza, a Traditional Cereal-Based Fermented Beverage: A Rich Source of Probiotics and Bacteriocin-Producing Lactic Acid Bacteria. In: Kristbergsson, K., Ötles, S. (eds) Functional Properties of Traditional Foods. Integrating Food Science and Engineering Knowledge Into the Food Chain, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7662-8_12

Download citation