Skip to main content

Abstract

This chapter introduces briefly colloids, and in particular emulsions and their importance in the food, medical, cosmetic, polymer, water purification, and pharmaceutical industries. It also highlights the relation between biological suspensions and colloids, which can be studied by using the same approach. The chapter identifies several numerical method used traditionally for studying colloids and biological suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Drumright-Clarke MA (2002) Numerical simulations that characterize the effects of surfactant on droplets in shear flow. Virginia Polytechnic Institute and State University Thesis. pp. 1–81

    Google Scholar 

  • Drumright-Clarke MA, Renardy Y (2004) The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia. Phys Fluids 16:14–21

    Article  Google Scholar 

  • Dupin M, Halliday I, Care C (2003) Multi-component lattice Boltzmann equation for mesoscale blood flow. J Phys A Math Gen 36:8517–8534

    Article  MATH  MathSciNet  Google Scholar 

  • Dupin M, Halliday I, Care C (2005) A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow. Med Eng Phys 28:13–18

    Article  Google Scholar 

  • Dupin M, Halliday I, Care C, Alboul L, Munn L (2007) Modeling of the flow of dense suspension of deformable particles in three dimensions. Phys Rev E 75:066707-1–066707-17

    Article  Google Scholar 

  • Eggleton C, Tsai T, Stebe K (2001) Tip streaming from a drop in the presence of surfactants. Phys Rev Lett 87:048302-1–048302-4

    Article  Google Scholar 

  • Feigl K, Megias-Alguacil D, Fischer P, Windhab E (2007) Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem Eng Sci 62:3242–3258

    Article  Google Scholar 

  • Kruijt-Stegeman Y, van de Vosse F, Meijer H (2004) Droplet behavior in the presence of insoluble surfactants. Phys Fluids 16:2785–2796

    Article  Google Scholar 

  • Lai M, Tseng Y, Huang H (2008) An immersed boundary method for interfacial flows with insoluble surfactant. J Comput Phys 227:7279–7293

    Article  MATH  MathSciNet  Google Scholar 

  • Li X, Pozridikis C (1997) The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J Fluid Mech 341:165–194

    Article  MATH  MathSciNet  Google Scholar 

  • Liu Y, Liu W (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220:139–154

    Article  MATH  MathSciNet  Google Scholar 

  • Milliken W, Stone H, Leal L (1993) The effect of surfactant on the transient motion of Newtonian drops. Phys Fluids A 5:69–79

    Article  MATH  Google Scholar 

  • Sun C, Munn L (2005) Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. Biophys J 88:1635–1645

    Article  Google Scholar 

  • Sundararaj U, Macosko C (1995) Drop brakeup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules 28:2647–2657

    Article  Google Scholar 

  • Tsubota K, Wada S, Yamaguchi T (2006) Simulation study on effects of hematocrit on blood flow properties using particle method. J Biomech Sci Eng 1:159–170

    Article  Google Scholar 

  • van der Graaf S (2006) Membrane emulsification: droplet formation and effects of interfacial tension. Wageningen University, Amsterdam, Thesis. pp. 1–159

    Google Scholar 

  • Vlahovska P, Loewenberg M, Blawzdziewicz J (2005) Deformation of surfactant covered drop in a linear flow. Phys Fluids 17:103103-1–103103-18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farhat, H., Lee, J.S., Kondaraju, S. (2014). Introduction. In: Accelerated Lattice Boltzmann Model for Colloidal Suspensions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7402-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7402-0_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7401-3

  • Online ISBN: 978-1-4899-7402-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics