Accelerated Lattice Boltzmann Model for Colloidal Suspensions

Rheology and Interface Morphology

  • Hassan Farhat
  • Joon Sang Lee
  • Sasidhar Kondaraju

Table of contents

  1. Front Matter
    Pages i-viii
  2. Hassan Farhat, Joon Sang Lee, Sasidhar Kondaraju
    Pages 1-3
  3. Hassan Farhat, Joon Sang Lee, Sasidhar Kondaraju
    Pages 5-21
  4. Hassan Farhat, Joon Sang Lee, Sasidhar Kondaraju
    Pages 23-67
  5. Hassan Farhat, Joon Sang Lee, Sasidhar Kondaraju
    Pages 69-97
  6. Hassan Farhat, Joon Sang Lee, Sasidhar Kondaraju
    Pages 99-121
  7. Hassan Farhat, Joon Sang Lee, Sasidhar Kondaraju
    Pages 123-136
  8. Back Matter
    Pages 137-158

About this book

Introduction

Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids.

Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.  

Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the rheology of colloids and microvasculature blood flow.  

The presented LBM model provides a flexible numerical platform consisting of various modules that could be used separately or in combination for the study of a variety of colloids and biological flow deformation problems.

Keywords

Colloidal rheology Colloids LBM Lattice Boltzmann method Microcolloids Surfacant-covered droplets

Authors and affiliations

  • Hassan Farhat
    • 1
  • Joon Sang Lee
    • 2
  • Sasidhar Kondaraju
    • 3
  1. 1.Department of Mechanical EngineeringWayne State UniversityDetroitUSA
  2. 2.Yonsei UniversitySeoulKorea, Republic of (South Korea)
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology, DelhiNew DelhiIndia

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4899-7402-0
  • Copyright Information Springer Science+Business Media New York 2014
  • Publisher Name Springer, Boston, MA
  • eBook Packages Engineering
  • Print ISBN 978-1-4899-7401-3
  • Online ISBN 978-1-4899-7402-0
  • About this book