Skip to main content

Different Developmental Strategies of the Telencephalic Commissures: A Comparison between the Ontogeneses of Visual Callosal Connections and of Olfactory Commissural Connections in Rodents

  • Chapter
The Visual System from Genesis to Maturity

Abstract

In many areas of experimental biology new concepts receive so much attention from researchers in the field that they soon begin to be considered undoubted truths of universal value. In neuroscience, one such truism is the concept that the development of cortical connectivity necessarily employs a dual strategy in which a sequence of progressive events is followed by a sequence of regressive mechanisms that sculpt the final cortical hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angevine JB Jr, Sidman RL (1961): Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768.

    Article  Google Scholar 

  • Bayer SA (1986): Neurogenesis in the rat primary olfactory cortex. Int J Dev Neurosci 4:251–271.

    Article  Google Scholar 

  • Berbel P, Innocenti GM (1988): The development of the corpus callosum in cats: A light-and electron-microscopic study. J Comp Neurol 276:132–156.

    Article  Google Scholar 

  • Berry M, Rogers AW (1965): The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709.

    Google Scholar 

  • Blue ME, Parnavelas JG (1983): The formation and maturation of synapses in the visual cortex of the rat: 1. Quantitative analysis. J Neurocytol 12:697–712.

    Article  Google Scholar 

  • Cabana T, Martin GF (1985): The development of commissural connections of somatic motor-sensory areas of neocortex in the North American opossum. Anat Embryol 171:121–128.

    Article  Google Scholar 

  • Caviness VS Jr (1982): Neocortical histogenesis in normal and Reeler mice: Developmental study based on [3H]-thymidine autoradiography. Dev Brain Res 4:293–302.

    Article  Google Scholar 

  • Chalupa LM, Killackey HP, Snider CJ, Lia B (1989): Callosal projection neurons in area 17 of the fetal rhesus monkey. Dev Brain Res 46:303–308.

    Article  Google Scholar 

  • Chow KL, Baumbach HD, Lawson R (1981): Callosal projections of the striate cortex in the neonatal rabbit. Exp Brain Res 42:122–126.

    Article  Google Scholar 

  • Chun JJ, Nakamura MJ, Shatz CJ (1987): Transient cells of the developing mammalian telencephalon are peptide immunoreactive neurons. Nature 325:617–620.

    Article  Google Scholar 

  • Cipolloni PB, Peters A (1979): The bilaminar and banded distribution of callosal terminals in the posterior neocortex of the rat. Brain Res 176:33–47.

    Article  Google Scholar 

  • Crossland WJ, Uchwat CJ (1982): Neurogenesis of the central visual pathways in the golden hamster. Dev Brain Res 5:99–103.

    Article  Google Scholar 

  • Cusick CG, Lund RD (1981): The distribution of the callosal projection to the occipital visual cortex in rats and mice. Brain Res 214:239–259.

    Article  Google Scholar 

  • Cusick CG, Lund RD (1982): Modification of visual callosal projections in rats. J Comp Neurol 212:385–398.

    Article  Google Scholar 

  • Davis BJ, Macrides F, Youngs WM, Schneider SP, Rosene DL (1978): Efferents and centrifugal afferents of the main and accessory olfactory bulbs in the hamster. Brain Res Bull 3:59–72.

    Article  Google Scholar 

  • Dean P (1990): Sensory cortex: Visual perceptual functions. In: The Cerebral Cortex of the Rat, Kolb B, Tees RC, eds. Cambridge: MIT Press.

    Google Scholar 

  • Derer P, Caviness VS Jr, Sidman RL (1977): Early cortical histogenesis in the primary olfactory cortex of the mouse. Brain Res 123:27–40.

    Article  Google Scholar 

  • Diao Y-C, So K-F (1991): Dendritic morphology of visual callosal neurons in the golden hamster. Brain Behav Evol 37:1–9.

    Article  Google Scholar 

  • Drager U (1975): Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol 160:269–290.

    Article  Google Scholar 

  • Dursteler MR, Blakemore C, Garey LJ (1979): Projections to the visual cortex in the golden hamster. J Comp Neurol 183:185–204.

    Article  Google Scholar 

  • Ebbesson SOE (1980): The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213:179–212.

    Google Scholar 

  • Ebbesson SOE (1984): Evolution and ontogeny of neural circuits. Behav Brain Sci 7:321–331.

    Article  Google Scholar 

  • Ebner FF, Myers RE (1967): Afferent connections to neocortex in the opossum (Didelphis virginiana). J Comp Neurol 129:241–248.

    Article  Google Scholar 

  • Edelman GM (1987): Neural Darwinism. The Theory of Neuronal Group Selection. New York: Basic Books.

    Google Scholar 

  • Elberger AJ, Smith EL III, White JM (1983): Spatial dissociation of visual inputs alters the origin of the corpus callosum. Neurosci Lett 35:19–24.

    Article  Google Scholar 

  • Feng JZ, Brugge JF (1983): Postnatal development of auditory callosal connections in the kitten. J Comp Neurol 214:416–426.

    Article  Google Scholar 

  • Ferrer I, Bernet E, Soriano E, Del Rio T, Fonseca M (1990): Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory macrophages. Neuroscience 39:451–458.

    Article  Google Scholar 

  • Finlay BL, Slattery M (1983): Local differences in the amount of early cell death in neocortex predict adult local specializations. Science 219:1349–1351.

    Article  Google Scholar 

  • Finlay BL, Wikler KC, Sengelaub DR (1987): Regressive events in brain development and scenarios for vertebrate brain evolution. Brain Behav Evol 30:102–117.

    Article  Google Scholar 

  • Fish SE, Mooney RD, Rhoades RW (1990): Development of occipital callosal axons in hamster: Anterograde tracing with Di-I. Soc Neurosci Abstr 16:495.

    Google Scholar 

  • Floeter MK, Jones EG (1985): The morphology and phased outgrowth of callosal axons in the fetal rat. Dev Brain Res 22:7–18.

    Article  Google Scholar 

  • Gattass R, Rosa MGP, Sousa APB, Pinon MCG, Fiorani M Jr, Neuenschwander S (1990): Cortical streams of visual information processing in primates. Braz J Med Biol Res 23:375–394.

    Google Scholar 

  • Granger EM, Masterton RB, Glendenning KK (1985): Origin of interhemispheric fibers in acallosal opossum (with a comparison to callosal origins in rat). J Comp Neurol 241:82–98.

    Article  Google Scholar 

  • Gravel C, Sasseville R, Hawkes R (1990): Maturation of the corpus callosum of the rat: 2. Influence of thyroid hormones on the number and maturation of axons. J Comp Neurol 291:147–161.

    Article  Google Scholar 

  • Guadano-Ferraz A, Berbel P, Balboa R, Innocenti GM (1991): The development of the anterior commissure in normal and hypothyroid rats. Eur J Neurosci (Suppl) 4:225.

    Google Scholar 

  • Haberly LB, Bower JM (1984): Analysis of association fiber system in piriform cortex with intracellular recording and staining techniques. J Neurophysiol 51:90–112.

    Google Scholar 

  • Haberly LB, Price JL (1978a): Association and commissural fiber systems of the olfactory cortex of the rat: 1. Systems originating in the piriform cortex and adjacent areas. J Comp Neurol 178:711–740.

    Article  Google Scholar 

  • Haberly LB, Price JL (1978b): Association and commissural fiber systems of the olfactory cortex of the rat: 2. Systems originating in the olfactory peduncle. J Comp Neurol 181:781–808.

    Article  Google Scholar 

  • Hedin-Pereira C, Jhaveri S, Lent R (1991): Development of callosal axon arbors in hamsters. Soc Neurosci Abstr 17:740.

    Google Scholar 

  • Hernit CS, Van Sluyters RC, Murphy KM (1990): Visual callosal development in neonatal rats: Do migrating or undifferentiated cells have an interhemispheric axon? Soc Neurosci Abstr 16:803.

    Google Scholar 

  • Heuman D, Leuba G (1983): Neuronal death in the development and aging of the cerebral cortex of the mouse. Neuropathol Appl Neurobiol 9:297–311.

    Article  Google Scholar 

  • Hogan D, Berman NEJ (1990): Growth cone morphology, axon trajectory and branching patterns in the neonatal rat corpus callosum. Dev Brain Res 53:283–287.

    Article  Google Scholar 

  • Horel JA, Stelzner DJ (1981): Neocortical projections of the rat anterior commissure. Brain Res 220:1–12.

    Article  Google Scholar 

  • Hughes CM, Peters A (1990): Morphological evidence for callosally projecting nonpyramidal neurons in rat visual cortex. Anat Embryol 182:591–604.

    Article  Google Scholar 

  • Innocenti GM (1980): The primary visual pathway through the corpus callosum: Morphological and functional aspects in the cat. Arch Ital Biol 118:124–188.

    Google Scholar 

  • Innocenti GM (1981): Growth and reshaping of axons in the establishment of visual callosal connections. Science 212:824–827.

    Article  Google Scholar 

  • Innocenti GM (1986): General organization of callosal connections in the cerebral cortex. In: Cerebral Cortex, Jones EG, Peters A. eds. New York: Plenum Press.

    Google Scholar 

  • Innocenti GM, Fiore L, Caminiti R (1977): Exuberant projections into the corpus callosum from the visual cortex of newborn cats. Neurosci Lett 4:237–242.

    Article  Google Scholar 

  • Innocenti GM, Frost DO (1979): Effects of visual experience on the maturation of the efferent system to the corpus callosum. Nature 280:231–234.

    Article  Google Scholar 

  • Innocenti GM, Frost DO (1980): The postnatal development of visual callosal connections in the absence of visual experience or of the eyes. Exp Brain Res 39:365–375.

    Article  Google Scholar 

  • Ivy GO, Killackey HP (1981): The ontogeny of distribution of the callosal projection neurons in the rat parietal cortex. J Comp Neurol 195:367–389.

    Article  Google Scholar 

  • Jacobson S, Trojanowski JQ (1974): The cells of origin of the corpus callosum in rat, cat, and rhesus monkey. Brain Res 74:149–155.

    Article  Google Scholar 

  • Jouandet ML (1982): Neocortical and basal telencephalic origins of the anterior commissure of the cat. Neuroscience 7: 1731–1752.

    Article  Google Scholar 

  • Jouandet ML, Garey LJ, Lipp HP (1984): Distribution of the cells of origin of the corpus callosum and the anterior commissure in the marmoset monkey. Anat Embryol 169:45–59.

    Article  Google Scholar 

  • Jouandet ML, Gazzaniga MS (1979): Cortical field of origin of the anterior commissure of the rhesus monkey. Exp Neurol 66:381–397.

    Article  Google Scholar 

  • Jouandet ML, Hartenstein V (1983): Basal telencephalic origins of the anterior commissure of the rat. Exp Brain Res 50:183–192.

    Google Scholar 

  • Katz MJ, Lasek RJ, Silver J (1983): Ontophyletics of the nervous system: Development of the corpus callosum and evolution of axon tracts. Proc Natl Acad Sci USA 80:5936–5940.

    Article  Google Scholar 

  • Koppel H, Innocenti GM (1983): Is there a genuine exuberancy of callosal projections in development? A quantitative electron microscopic study in the cat. Neurosci Lett 41:33–40.

    Article  Google Scholar 

  • Krieg WJS (1946): Connections of the cerebral cortex: 1. The albino rat. A topography of the cortical areas. J Comp Neurol 84:221–275.

    Article  Google Scholar 

  • LaMantia AS, Rakic P (1984): The number, size, myelination, and regional variation of axons in the corpus callosum and anterior commissure of the developing rhesus monkey. Soc Neurosci Abstr 10:1081.

    Google Scholar 

  • LaMantia AS, Rakic P (1990): Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey. J Neurosci 10:2156–2175.

    Google Scholar 

  • Lent R (1984): Neuroanatomical effects of neonatal transection of the corpus callosum in hamsters. J Comp Neurol 223:548–555.

    Article  Google Scholar 

  • Lent R, Guimarāes RZP (1991): Development of paleocortical projections through the anterior commissure of hamsters adopts progressive, not regressive, strategies. J Neurobiol 22:475–498.

    Article  Google Scholar 

  • Lent R, Hedin-Pereira C, Menezes JRL, Jhaveri S (1990): Neurogenesis and development of callosal and intracortical connections in the hamster. Neuroscience 38:21–37.

    Article  Google Scholar 

  • Lent R, Jhaveri S (1992): Myelination of the cerebral commissures in the hamster, as revealed by a monoclonal antibody specific for oligodendrocytes. Dev Brain Res 66:193–201.

    Article  Google Scholar 

  • Lent R, Schmidt SL (1986): Dose-dependent occurrence of the aberrant longitudinal bundle in the brains of mice born acallosal after prenatal gamma-irradiation. Dev Brain Res 25:127–132.

    Article  Google Scholar 

  • Lent R, Schmidt SL (1992): The ontogenesis of the cortical commissures and the determination of brain asymmetries. Progr Neurobiol, in press.

    Google Scholar 

  • Lund JS, Lund RD (1970): The termination of callosal fibers in the paravisual cortex of the rat. Brain Res 17:25–45.

    Article  Google Scholar 

  • Lund RD, Mitchell DE (1979): Asymmetry in the visual callosal connections of strabismic cats. Brain Res 167:176–179.

    Article  Google Scholar 

  • Lund RD, Mitchell DE, Henry GH (1978): Squint-induced modification of callosal connections in cats. Brain Res 144:169–172.

    Article  Google Scholar 

  • Martin GF (1967): Interneocortical connections in the opossum, Didelphis virginiana. Anat Rec 157:607–616.

    Article  Google Scholar 

  • McCourt ME, Thalluri J, Henry GH (1990): Properties of area 17/18 border neurons contributing to the visual transcallosal pathway in the cat. Visual Neurosci 5:83–98.

    Article  Google Scholar 

  • Montera VM (1981): Comparative studies on the visual cortex. In: Cortical Sensory Organisation: Vol. 2 Multiple Visual Areas, Woolsey CN, ed. Clifton, NJ: Humana Press.

    Google Scholar 

  • Mooney RD, Rhoades RW, Fish SE (1984): Neonatal superior colliculus lesions alter visual callosal development in hamster. Exp Brain Res 55:9–25.

    Article  Google Scholar 

  • Norris C, Kalil K (1990): Morphology and cellular interactions of growth cones in the developing corpus callosum. J Comp Neurol 293:268–291.

    Article  Google Scholar 

  • Northcutt RG (1990): Ontogeny and phylogeny: A re-evaluation of conceptual relationships and some applications. Brain Behav Evol 36:116–140.

    Article  Google Scholar 

  • Olavarria J, Van Sluyters RC (1985): Organization and postnatal development of callosal connections in the visual cortex of the rat. J Comp Neurol 239:1–26.

    Article  Google Scholar 

  • O’Leary DDM, Stanfield BB, Cowan WM (1981): Evidence that the early postnatal restriction of cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons. Dev Brain Res 1:607–617.

    Article  Google Scholar 

  • Pandya DN, Karol EA, Lele PP (1973): The distribution of the anterior commissure in the squirrel monkey. Brain Res 49:177–180.

    Article  Google Scholar 

  • Payne BR (1990): Function of the corpus callosum in the representation of the visual field in cat visual cortex. Visual Neurosci 5:205–211.

    Article  Google Scholar 

  • Peters A, Feldman ML (1976): The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex: 1. General description. J Neurocytol 5:63–84.

    Article  Google Scholar 

  • Pires-Neto MA, Lent R (1991): Pioneer fibers in the anterior commissure of hamster embryos. Braz J Med Biol Res, 24:1067–1070.

    Google Scholar 

  • Raedler E, Raedler A (1978): Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol 154:267–284.

    Article  Google Scholar 

  • Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic P (1986): Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232:232–235.

    Article  Google Scholar 

  • Reep RL, Winans SS (1982): Efferent connections of dorsal and ventral agranular insular cortex in the hamster, Mesocricetus auratus. Neuroscience 7:2609–2635.

    Article  Google Scholar 

  • Rhoades RW, Dellacroce DD (1980): Visual callosal connections in the golden hamster. Brain Res 190:248–254.

    Article  Google Scholar 

  • Schmidt SL, Lent R (1987): The effects of prenatal irradiation on the development of cerebral cortex and corpus callosum of the mouse. J Comp Neurol 264:193–204.

    Article  Google Scholar 

  • Schwartz ML, Rakic P, Goldman-Rakic PS (1991): Early phenotype expression of cortical neurons: Evidence that a subclass of migrating neurons have callosal axons. Proc Natl Acad Sci USA 88:1354–1358.

    Article  Google Scholar 

  • Schwob JE, Price JL (1984): The development of axonal connections in the central olfactory system of rats. J Comp Neurol 223:177–202.

    Article  Google Scholar 

  • Sefton AJ, Dreher B (1985): Visual system. In: The Rat Nervous System: Vol. 1. Forebrain and Midbrain, Paxinos G, ed. Sydney, Australia: Academic Press.

    Google Scholar 

  • Segraves MA, Rosenquist AC (1982): The distribution of the cells of origin of callosal projections in cat visual cortex. J Neurosci 2:1079–1089.

    Google Scholar 

  • Shatz CJ (1977): Anatomy of interhemispheric connections in the visual system of Boston, Siamese, and ordinary cats. J Comp Neurol 173:497–518.

    Article  Google Scholar 

  • Silver J, Lorenz SE, Wahlsten D, Coughlin J (1982): Axonal guidance during development of the great cerebral commissures: Descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol 210:10–29.

    Article  Google Scholar 

  • Squatrito S, Battaglini PP, Galletti C, Sanseverino ER (1980): Projections from the visual cortex to the contralateral claustrum of the cat revealed by an anterograde axonal transport method. Neurosci Lett 19:271–275.

    Article  Google Scholar 

  • Sturrock RR (1976): Development of the mouse anterior commissure: 1. A comparison of myelination in the anterior and posterior limbs of the anterior commissure of the mouse brain. Zbl Vet Med C 5:54–67.

    Google Scholar 

  • Sturrock RR (1980): Myelination of the mouse corpus callosum. Neuropathol Appl Neurobiol 6:415–420.

    Article  Google Scholar 

  • Swadlow HA (1977): Relationship of the corpus callosum to visual areas I and II of the awake rabbit. Exp Neurol 57:516–531.

    Article  Google Scholar 

  • Switzer RC, De Olmos J, Heimer L (1985): Olfactory system. In: The Rat Nervous System: Vol 1. Forebrain and Midbrain, Paxinos G, ed. Sydney, Australia: Academic Press.

    Google Scholar 

  • Thomas HC, Espinoza SG (1987): Relationships between interhemispheric cortical connections and visual areas in hooded rats. Brain Res 417:214–224.

    Article  Google Scholar 

  • Tiao YC, Blakemore C (1976): Funtional organization in the visual cortex of the golden hamster. J Comp Neurol 168:459–482.

    Article  Google Scholar 

  • Tusa RJ, Palmer LA, Rosenquist AC (1981): Multiple cortical visual areas in cat. In: Cerebral Localization in Somatic, Visual and Auditory Systems, Woolsey CN, ed. Clifton, NJ: Humana Press.

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982): Two cortical visual systems. In: Analysis of Behavior, Ingle DJ, Goodale MA, eds. Cambridge: MIT Press.

    Google Scholar 

  • Uylings HBM, Van Eden CG, Parnavelas JG, Kalsbeek A (1990): The prenatal and postnatal development of rat cerebral cortex. In: The Cerebral Cortex of the Rat, Kolb B, Tees RC, eds. Cambridge: MIT Press.

    Google Scholar 

  • Van Essen DC (1985): Functional organization of primate visual cortex. In: Cerebral Cortex, vol. 3. Jones EG, Peters A, eds. New York: Plenum Press.

    Google Scholar 

  • Van Essen DC, Newsome WT, Bixby JL (1982): The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. J Neurosci 2:265–283.

    Google Scholar 

  • Vogt BA, Rosene DL, Peters A (1981): Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283.

    Article  Google Scholar 

  • Wagor E, Mangini NJ, Pearlman AL (1980): Retinotopic organization of striate and extrastriate visual cortex in the mouse. J Comp Neurol 193:187–202.

    Article  Google Scholar 

  • Winfield DA, Gatter KC, Powell TPS (1975): Certain connections of the visual cortex of the monkey shown by the use of horseradish peroxidase. Brain Res 92:456–461.

    Article  Google Scholar 

  • Wise SP, Jones EJ (1976): The organization and postnatal development of the commissural projections of the rat somatic sensory cortex. J Comp Neurol 168:313–344.

    Article  Google Scholar 

  • Yorke CH, Caviness VS (1975): Interhemispheric neocortical connections of the corpus callosum in the normal mouse: A study based on anterograde and retrograde methods. J Comp Neurol 164:233–246.

    Article  Google Scholar 

  • Zâborsky L, Wolff JR (1982): Distribution patterns and individual variations of callosal connections in the albino rat. Anat Embryol 165:213–232.

    Article  Google Scholar 

  • Zilles K (1985): The Cortex of the Rat: A Stereotaxic Atlas. Berlin: Springer-Verlag.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lent, R. (1992). Different Developmental Strategies of the Telencephalic Commissures: A Comparison between the Ontogeneses of Visual Callosal Connections and of Olfactory Commissural Connections in Rodents. In: Lent, R. (eds) The Visual System from Genesis to Maturity. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6726-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6726-8_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6728-2

  • Online ISBN: 978-1-4899-6726-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics