Mirror Systems for X-Ray Telescopes

  • I. L. Beigman
  • L. A. Vainshtein
  • Yu. P. Voinov
  • V. P. Shevel’ko
Part of the The Lebedev Physics Institute Series book series (LPIS)


As is known, studies of the soft x radiation of cosmic objects using proportional flow counters of large area are associated with considerable technical difficulties. At the same time, the use of reflecting x-ray optics is possible in this region of the spectrum (softer than l keV). It is advisable to examine the use of reflecting x-ray telescopes in two aspects. On the one hand, the reflecting optics makes it possible to have a comparatively large collecting area with small detector dimensions, which decreases the technical difficulties to a considerable extent and increases the signal-to-noise ratio; on the other hand, reflecting objectives open up the possibility in principle of obtaining an image analogous to that provided by telescopes in the visible region of the spectrum.


Reflection Coefficient Focal Plane Effective Area Focal Distance Semiconductor Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. J. Yentis, R. Novick, and P. Vanden Bout, Astrophys. J., 177, Part 1, 365–373, 375-386 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    D. J. Yentis, J. R. P. Angel, D. Mitchell, R. Novick, and P. Vanden Bout, New Techniques in Space Astronomy (IAU Symposium 41, 1971), pp. 145-158.Google Scholar
  3. 3.
    I. L. Beigman, L. A. Vainshtein, Yu. P. Voinov, D. A. Goganov, N. I. Komyak, S. L. Mandel’shtam, I. P. Tindo, N. A. Shatskii, and A. I. Shurygin, Tr. FIAN, 73, 3 (1974).Google Scholar
  4. 4.
    H. Wolter, Ann. Phys., 10, 94 (1952).CrossRefMATHGoogle Scholar
  5. 5.
    H. Wolter, Ann. Phys., 10, 286 (1952).CrossRefMATHGoogle Scholar
  6. 6.
    R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. Van Speybroeck, and T. F. Zehnpfennig, Space Sci. Revs, 9, 3 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    J. D. Mangus and J. H. Underwood, Appl.,Opt., 8, 95 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    G. S. Vaiana, W. P. Reidy, T. Zehnpfennig, L. P. Van Speybroeck, and R. Giacconi, Science, 161, 564 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    L. P. Van Speybroeck, R. C. Chase, and T. F. Zehnpfennig, Appl. Opt., 10, 945 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    O. A. Ershov, I. A. Brytov, and A. P. Lukirskii, Opt. i Spektr., 22, 127 (1967).Google Scholar
  11. 11.
    A. P. Lukirskii, E. P. Savinov, O. A. Ershov, and Yu. F. Shepelev, Opt. i Spektr., 16, 310 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • I. L. Beigman
  • L. A. Vainshtein
  • Yu. P. Voinov
  • V. P. Shevel’ko

There are no affiliations available

Personalised recommendations