Skip to main content

Abstract

Parasites are generally grouped into one of three broad classes: protozoa (single-celled organisms), helminths (including nematodes, trematodes, and cestodes), and ectoparasites. Parasitic diseases inflict tremendous damage and suffering to plants, animals, and humans. The scope of parasitism is difficult to imagine; it has been estimated that one billion people suffer from intestinal nematode infections alone, and as many as 150,000 avoidable deaths occur each year due to helminthiasis (Bundy, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablondi, F., Gordon, S., Morton, J., II, and Williams, J. H., 1952, An antimalarial alkaloid from Hydrangea. II. Isolation, Journal of Organic Chemistry, 17:14–18.

    Article  CAS  Google Scholar 

  • Academia Sínica, 1980, Crystal structure and absolute configuration of qinghaosu, Scientia Sinica (English Edition), 23(3):380–396.

    Google Scholar 

  • Astolfi Filho, S., Periera de Almeida, E. R., and Ganderm, E. S., 1978, The influence of hydroxyurea and colchicine on growth and morphology of Trypanosoma cruzi, Acta Tropica, 35:229–237.

    Google Scholar 

  • Bajpai, R., Dutta, G. P., and Vishwakarma, R. A, 1989, Blood schizontocidal activity of a new antimalarial drug, arteether (α/β), against Plasmodium knowlesi in rhesus monkeys, Transactions of the Royal Society of Tropical Medicine and Hygiene, 83:484.

    Article  PubMed  CAS  Google Scholar 

  • Baum, S. G., Wittner, M., Nadler, J. P., Horwitz, S. B., Dennis, J. E., Schiff, P. B., and Tanowitz, H. B., 1981, Taxol, a microtubule stabilizing agent, blocks the replication of Trypanosoma cruzi, Proceedings of the National Academy of Sciences U.S.A., 78(7):4571–4575.

    Article  CAS  Google Scholar 

  • Benard, J., Dat-Xuong, N., and Riou, G., 1975, Activité trypanocide de quelques derives de l’ellipticine sur Trypanosoma cruzi cultive in vitro, Comptes Rendus de l’Académie des Sciences (Paris) Serie D, 280(9): 1177–1180.

    CAS  Google Scholar 

  • Benard, J., and Riou, G., 1977, Effects of 9-hydroxy ellipticine on in vitro transcription of Trypanosoma cruzi DNAs, Biochemical and Biophysical Research Communications, 77(4):1189–1195.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, S. C. J., 1935, Equine cutaneous leishmaniasis: Treatment with berberine sulphate, Journal of Comparative Pathology and Therapeutics, 48:241–243.

    Article  CAS  Google Scholar 

  • Bhandari, P. R., and Mukerji, B., 1959, Holarrhena antidysenterica Wall (Kurchi), The Pharmaceutist, 1959:31–35.

    Google Scholar 

  • Bhutani, K. K., Sharma, G. L., and Ali, M., 1987, Plant based antiamoebic drugs. Part I. Antiamoebic activity of phenanthroindolizidine alkaloids: Common structural determinants of activity with emetine, Planta Medica, 53(6):532–536.

    Article  PubMed  CAS  Google Scholar 

  • Blanco, A., Aoki, A., Montamat, E. E., and Rovai, E., 1983, Effect of gossypol upon motility and ultrastructure of Trypanosoma cruzi, Journal of Protozoology, 30(4):648–651.

    PubMed  CAS  Google Scholar 

  • Bochis, R. J., and Fisher, M. H., 1968, The structure of palasonin, Tetrahedron Letters, 16:1971–1974.

    Article  Google Scholar 

  • Bodalski, T., Pelczarska, H., and Ujec, M., 1958, Dzialanie sangwinaryny i chelerytryny na Trichomonas vaginalis in vitro, Archiwum Immunologii i Terapii Doswiadczalnej, 6:705–711.

    CAS  Google Scholar 

  • Borst, P., 1977, Metabolism and chemotherapy of African trypanosomes, Transactions of the Royal Society of Tropical Medicine and Hygiene, 71:3–4.

    PubMed  CAS  Google Scholar 

  • Boveris, A., Docampo, R., Turrens, J. F., and Stoppani, A. O. M., 1977, Accion de β y α-lapachona sobre la produccion de H2O2 y el crecimiento de Trypanosoma cruzi, Revista de la Asociacion Argentina de Microbiologia, 9(2):54–61.

    PubMed  CAS  Google Scholar 

  • Boveris, A., Stoppani, A. O. M., Docampo, R., and Cruz, F. S., 1978, Superoxide anion production and trypanocidal action of naphthoquinones on Trypanosoma cruzi, Comparative Biochemistry and Physiology, 61G 327–329.

    Google Scholar 

  • Brandicourt, O., Druilhe, P., Diouf, F., Brasseur, P., Turk, P., and Danis, M., 1986, Decreased sensitivity to chloroquine and quinine of some Plasmodium falciparum strains from Senegal in September 1984, American Journal of Tropical Medicine and Hygiene, 35(4):717–721.

    PubMed  CAS  Google Scholar 

  • Bray, D. H., O’Neill, M. J., Boardman, P., Phillipson, J. D., and Warhurst, D. C., 1985, Structure related in vitro antimalarial activities of some quassinoids, Journal of Pharmacy and Pharmacology (Supplement), 37:142P.

    Article  Google Scholar 

  • Bray, D. H., O’Neill, M. J., Phillipson, J. D., and Warhurst, D. C., 1987a, In vivo antimalarial activity of quassinoids, Journal of Pharmacy and Pharmacology (Supplement), 39:85P.

    Google Scholar 

  • Bray, D. H., Boardman, P., O’Neill, M. J., Chan, K. L., Phillipson, J. D., Warhurst, D. C., and Suffness, M., 1987b, Plants as a source of antimalarial drugs. 5. Activities of Ailanthus altissima stem constituents and of some related quassinoids, Phytotherapy Research, l(1):22–24.

    Article  Google Scholar 

  • Bray, D. H., Warhurst, D. C., Connolly, J. D., O’Neill, M. J., and Phillipson, J. D., 1990, Plants as sources of antimalarial drugs. Part 7. Activity of some species of Meliaceae plants and their constituent limonoids, Phytotherapy Research, 4(1):29–35.

    Article  CAS  Google Scholar 

  • Browning, P. M., and Bisby, R. H., 1989, Qinghaosu does not affect the major thermotropic phase transition in model membranes of dipalmitoylphos-phatidylcholine, Molecular and Biochemical Parasitology, 32(1):57–60.

    Article  PubMed  CAS  Google Scholar 

  • Bundy, D. A. P., 1990, New initiatives in the control of helminths, Transactions of the Royal Society of Tropical Medicine and Hygiene, 84:467–468.

    Article  PubMed  CAS  Google Scholar 

  • Bunnag, D., Harinasuta, T., Vanijanonta, S., Looareesuwan, S., Chinamas, S., Pannavut, W., Berthe, J., and Druilhe, P., 1987, Treatment of chloroquine resistant falciparum malaria with a combination of quinine, quinidine, and cinchonine (LA 40221) in adults by oral and intravenous administration, Acta Leidensia, 55:139–149.

    PubMed  CAS  Google Scholar 

  • Bunnag, D., Harinasuta, T., Looareesuwan, S., Chittamas, S., Pannavut, W., Berthe, J., and Mondesir, J. M., 1989, A combination of quinine, quinidine and cinchonine (LA 40221) in the treatment of chloroquine resistant falciparum malaria in Thailand: Two double-blind trials, Transactions of the Royal Society of Tropical Medicine and Hygiene, 83:66.

    Article  PubMed  CAS  Google Scholar 

  • Calzado-Flores, C. C., Segura, J. J., Rodriguez, V. M., and Domínguez, X. A, 1983, A new amoebicide agent from Castela texana, Proceedings of the Western Pharmacology Society, 26:431–434.

    PubMed  CAS  Google Scholar 

  • Carvalho, L. H., Rocha, E. M. M., Raslan, D. S., Oliveira, A. B., and Krettli, A. U., 1988, In vitro activity of natural and synthetic naphthoquinones against erythrocytic stages of Plasmodium falciparum, Brazilian Journal of Medical and Biological Research, 21:485–487.

    PubMed  CAS  Google Scholar 

  • Cavin, J. C., Krassner, S. M., and Rodriguez, E., 1987, Plant-derived alkaloids active against Trypanosoma cruzi, Journal of Ethnopharmacology, 19:89–94.

    Article  PubMed  CAS  Google Scholar 

  • Chan, K. L., O’Neill, M. J., Phillipson, J. D., and Warhurst, D. C., 1986, Plants as sources of antimalarial drugs. Part 3. Eurycoma longifolia, Planta Medica, 52(2):105–107.

    Article  Google Scholar 

  • Chan, K. L., Lee, S. P., Sam, T. W., and Han, B. H., 1989, A quassinoid glycoside from the roots of Eurycoma longifolia, Phytochemistry, 28(10):2857–2859.

    Article  CAS  Google Scholar 

  • Chatterjee, D. K., Iyer, N., and Ganguli, B. N., 1987, Antiamoebic activity of chonemorphine, a steroidal alkaloid, in experimental models, Parasitology Research, 74:30–33.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C., Huang, N. Y., and Hsueh, A. J., 1962, Clinical evaluation of hemerocallin as an antischistosomal drug, Acta Pharmaceutica Sinica, 9:579–586.

    Google Scholar 

  • Chen J. H., 1980, Anticestodal activity of cucurbitine, Chinese Traditional Herbal Drugs, 11:1–14.

    CAS  Google Scholar 

  • Chopra, R. N., and Chakerburty, M., 1935, The pharmacological action of tylophorine: The alkaloid occurring in Tylophora asthmaticus, Indian Journal of Medical Research, 23:263–269.

    CAS  Google Scholar 

  • Chou, A. C., Chevli, R., and Fitch, C. D., 1980, Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites, Biochemistry, 19:1543–1549.

    Article  PubMed  CAS  Google Scholar 

  • Coordinating Group for Research on the Structure of Qing Hau Sau, 1977, A new type of sesquiterpene lactone — Qing hau sau, K’o Hsueh Tung Pao, 22(3): 142.

    Google Scholar 

  • Cruz, F. S., Vasconcellos, M. E., and Leon, W., 1975, Inhibition of different strains of Trypanosoma cruzi by olivacine and olivacine pamoate, Journal of Protozoology, 22:86A-87A (Abstract).

    Google Scholar 

  • Cruz, F. S., Docampo, R., and DeSouza, W., 1978, Effect of ß-lapachone on hydrogen peroxide production in Trypanosoma cruzi, Acta Tropica, 35:35–40.

    PubMed  CAS  Google Scholar 

  • Cunningham, L. V., Kazan, B. M., and Kuwahara, S. S., 1972, Effect of long-chain fatty acids on some trypanosomatid flagellates, Journal of General Microbiology, 70:491–496.

    Article  PubMed  CAS  Google Scholar 

  • DasGupta, B. M., 1930, The treatment of oriental sore with berberine acid sulphate, Indian Medical Gazette, 65:683–685.

    Google Scholar 

  • DasGupta, B. M., and Dikshit, B. B., 1929, Berberine in the treatment of oriental sore, Indian Medical Gazette, 64:67–70.

    Google Scholar 

  • Devi, A. L., 1929, Berberine sulphate in oriental sore, Indian Medical Gazette, 64:139–140.

    CAS  Google Scholar 

  • Ding, G. S., 1988, Recent studies on antimalarials in China: A review of literature since 1980, International Journal of Experimental and Clinical Chemotherapy, 1(2):9–21.

    CAS  Google Scholar 

  • Dos Santos Filho, D., and Gilbert, B., 1975, The alkaloids of Nectandra megapotamica, Phytochemistry, 14:821–822.

    Article  CAS  Google Scholar 

  • Dreyfuss, G., Allais, D. P., Guinaudeau, H., and Bruneton, J., 1987, Recherche de l’activite trypanocide d’alcaloides isoquinoleiques chez la souris, Annales Pharmaceutiques Françaises, 45(3):243–248.

    PubMed  CAS  Google Scholar 

  • Druilhe, P., Brandicourt, O., Chongsuphajaisiddhi, T., and Berthe, J., 1988, Activity of a combination of three Cinchona bark alkaloids against Plasmodium falciparum in vitro, Antimicrobial Agents and Chemotherapy, 32(2):250–254.

    Article  PubMed  CAS  Google Scholar 

  • Duan, M. F., 1983, Anthelminthic properties of Quisqualis indica, p. 1024–1030, in: “The Pharmacology and Usage of Traditional Chinese Drugs,” Y. S. Wang, ed., People’s Medical Publishing House, Beijing, China.

    Google Scholar 

  • Dutta, G. P., and Yadava, J. N. S., 1972, Direct amoebicidal action of known antiamoebic drugs against axenically grown Entamoeba histolytica, Indian Journal of Medical Research, 60:1156–1163.

    PubMed  CAS  Google Scholar 

  • Dutta, G. P., Bajpai, R., and Vishwakarma, R. A, 1989a, Comparison of antimalarial efficacy of artemisinin (qinghaosu) and arteether against Plasmodium cynomolgi B infection in monkeys, Transactions of the Royal Society of Tropical Medicine and Hygiene, 83:56–57.

    Article  PubMed  CAS  Google Scholar 

  • Dutta, G. P., Bajpai, R., and Vishwakarma, R. A., 1989b, Antimalarial efficacy of arteether against multiple drug resistant strain of Plasmodium yoelii nigeriensis, Pharmacology Research, 21(4):415–419.

    Article  CAS  Google Scholar 

  • Elford, B. C., Roberts, M. F., Phillipson, J. D., and Wilson, J. M., 1987, Potentiation of the antimalarial activity of qinghaosu by methoxylated flavones, Transactions of the Royal Society of Tropical Medicine and Hygiene, 81:434–436.

    Article  PubMed  CAS  Google Scholar 

  • Evans, A. T., and Croft, S. L., 1987, Antileishmanial activity of harmaline and other tryptamine derivatives, Phytotherapy Research, l(1):25–27.

    Article  Google Scholar 

  • Fandeur, T., Moretti, C., and Polonsky, J., 1985, In vitro and in vivo assessment of antimalarial activity of sergeolide, Planta Medica, 51(1):20–23.

    Article  PubMed  CAS  Google Scholar 

  • Fournet, A., Manjon, A. M., Munoz, V., Angelo, A., Bruneton, J., Hocquemiller, R., Cortes, D., and Cave, A., 1988a, Activite antiparasitaire d’alcaloides bisbenzylisoquinoleiques. II. Activite in vitro sur des epimastigotes de trois souches typifiees de Trypanosoma cruzi, Journal of Ethnopharmacology, 24:337–343.

    Article  PubMed  CAS  Google Scholar 

  • Fournet, A., Munoz, V., Manjon, A. M., Angelo, A, Hocquemiller, R., Cortes, D., Cave, A., and Bruneton, J., 1988b, Activite antiparasitaire d’alcaloides bisbenzylisoquinoleiques. I. Activite in vitro sur des promastigotes de trois souches de Leishmania, Journal of Ethnopharmacology, 24:327–335.

    Article  PubMed  CAS  Google Scholar 

  • Fujioka, H., Nishiyama, Y., Furukawa, H., and Kumada, N., 1989, In vitro and in vivo activities of atalaphillinine and related acridone alkaloids against rodent malaria, Antimicrobial Agents and Chemotherapy, 33(1):6–9.

    Article  PubMed  CAS  Google Scholar 

  • Gasquet, M., Bamba, D., Babadjamian, A, Balansard, G., Timon-David, P., and Metzger, J., 1985, Action amoebicide et anthelminthique du vernolide et de l’hydroxyvernolide isoles des feuilles de Vernonia colorata (Willd.) Drake, European Journal of Medicinal Chemistry, 20(2): 111–115.

    CAS  Google Scholar 

  • Geary, T. G., Divo, A. A., and Jensen, J. B., 1989, Stage specific actions of antimalarial drugs on Plasmodium falciparum in culture, American Journal of Tropical Medicine and Hygiene, 40(3):240–244.

    PubMed  CAS  Google Scholar 

  • Gérez de Burgos, N. M., Burgos, C., Montamat, E. E., Rovai, L. E., and Blanco, A., 1984, Inhibition by gossypol of oxidoreductases from Trypanosoma cruzi, Biochemical Pharmacology, 33(7):955–959.

    Article  PubMed  Google Scholar 

  • Gillin, F. D., Reiner, D. S., and Suffness, M., 1982, Bruceantin, a potent amoebicide from a plant, Brucea antidysenterica, Antimicrobial Agents and Chemotherapy, 22(2):342–345.

    Article  PubMed  CAS  Google Scholar 

  • Glew, R. H., Collins, W. E., and Miller, L. H., 1978, Selection of increased quinine resistance in Plasmodium falciparum in Aotus monkeys, American Journal of Tropical Medicine and Hygiene, 27(1):9–13.

    PubMed  CAS  Google Scholar 

  • Goijman, S. G., Turrens, J. F., Marini-Bettolo, G. B., and Stoppani, A. O. M., 1985, Effect of tingenone, a quinonoid triterpene, on growth and macromolecule biosynthesis in Trypanosoma cruzi, Experientia, 41:646–648.

    Article  PubMed  CAS  Google Scholar 

  • Grollman, A. P., 1966, Structural basis for inhibition of protein synthesis by emetine and cycloheximide based on an analogy between ipecac alkaloids and glutarimide antibiotics, Proceedings of the National Academy of Sciences U.S.A., 56:1867–1874.

    Article  CAS  Google Scholar 

  • Grollman, A. P., 1967, Structural basis for the inhibition of protein biosynthesis: Mode of action of tubulosine, Science, 157:84–85.

    Article  PubMed  CAS  Google Scholar 

  • Grollman, A. P., and Jarkovsky, Z., 1974, Emetine and related alkaloids, Antibiotics, 3:420–435.

    Google Scholar 

  • Gu, G., Feng, S., Wang, X., Zhou, Y., and Li, G., 1984, Studies on the active principles of Di-er Cao. The isolation and structure of japonicine A, Kexue Tongbao, 29(4):548–549.

    CAS  Google Scholar 

  • Gupta, R. S., and Siminovitch, L., 1977, Mutants of CHO cells resistant to the protein synthesis inhibitors, cryptopleurine and tylocrebrine: Genetic and biochemical evidence for a common site of action of emetine, cryptopleurine, tylocrebrine and tubulosine, Biochemistry, 16(14):3209–3214.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R. S., Krepinski, J. J., and Siminovitch, L., 1980, Structural determinants responsible for the biological activity of (-)-emetine, (-)-cryptopleurine, and (-)-tylocrebrine: Structure-activity relationship among related compounds, Molecular Pharmacology, 18:136–143.

    PubMed  CAS  Google Scholar 

  • Guru, P. Y., Warhurst, D. C., Harris, A., and Phillipson, J. D., 1982, Antimalarial activity of bruceantin in vitro, Annals of Tropical Medicine and Parasitology, 77(4):433–435.

    Google Scholar 

  • Hahn, F. E., and Ciak, J., 1975, Berberine, Antibiotics, 3:577–584.

    CAS  Google Scholar 

  • Hakizamungu, E., Van Puyvelde, L., Wery, M., De Kimpe, N., and Schamp, N., 1988, Active principles of Tetradenia riparia. III. Anti-Trichomonas activity of 8(14),15-sandaracopimaradiene-7α,18-diol, Phytotherapy Research, 2(4):207–208.

    Article  CAS  Google Scholar 

  • Hassan, Y. A., 1989, Evidence that the antimalarial activity of artemisinin is not mediated via intercalation with nucleotides, Drug Design and Delivery, 4(2): 129–133.

    Google Scholar 

  • Heidrich, J. E., Hunsaker, L. A, and Vander Jagt, D. L., 1983, Gossypol, an antifertility agent, exhibits antimalarial activity in vitro, IRCS Medical Science, 11:304.

    CAS  Google Scholar 

  • Henderson, F. G., Rose, C. L., Harris, P. N., and Chen, K. K., 1949, γ-Dichroine, the antimalarial alkaloid of Ch’ang Shan, Journal of Pharmacology and Experimental Therapeutics, 95:191–200.

    PubMed  CAS  Google Scholar 

  • Hopp, K. H., Cunningham, L. V., Bromel, M. C., Schermeister, L. J., and Wahba Khalil, S. K., 1976, In vitro antitrypanosomal activity of certain alkaloids against Trypanosoma lewisi, Lloydia, 39(5)375]–377.

    PubMed  CAS  Google Scholar 

  • James, R. F., 1985, Malaria treated with emetine or metronidazole, Lancet, 8453:498.

    Article  Google Scholar 

  • Jayaswal, S. B., 1976, Amoebicidal activity of steroidal alkaloids of Wrightia tomentosa in vitro, Indian Journal of Pharmacy, 38(4): 112–113.

    CAS  Google Scholar 

  • Johne, S., 1986, Quinazoline alkaloids, p. 99–140, in: “The Alkaloids,” Volume 29, A. Brossi, ed., Academic Press, New York, New York.

    Google Scholar 

  • Kagan, J., Bazin, M., and Santus, R., 1989, Photosensitization with a-terthienyl: The formation of superoxide ion in aqueous media, Journal of Photochemistry and Photobiology, B: Biology, 3:165–174.

    Article  CAS  Google Scholar 

  • Kaplan, D. T., Keen, N. T., and Thomason, I. J., 1980a, Association of glyceollin with the incompatible response of soybean roots to Meloidogyne incognita, Physiology and Plant Pathology, 16:309–318.

    CAS  Google Scholar 

  • Kaplan, D. T., Keen, N. T., and Thomason, I. J., 1980b, Studies on the mode of action of glyceollin in soybean incompatibility to the root-knot nematode, Meloidogyne incognita, Physiology and Plant Pathology, 16:319–325.

    CAS  Google Scholar 

  • Keene, A. T., Anderson, L. A., Phillipson, J. D., and Warhurst, D. C., 1983, Anti-amoebic and cytotoxic activities of cinchophylline alkaloids, Journal of Pharmacy and Pharmacology (Supplement), 35:20P.

    Google Scholar 

  • Keene, A. T., Harris, A., Phillipson, J. D., and Warhurst, D. C., 1986, In vitro amoebicidal testing of natural products. Part 1. Methodology, Planta Medica, 52:278–285.

    Article  Google Scholar 

  • Keene, A. T., Phillipson, J. D., Warhurst, D. C., Koch, M., and Seguin, E., 1987, In vitro amoebicidal testing of natural products. Part 2. Alkaloids related to emetine, Planta Medica, 53:201–206.

    Article  PubMed  CAS  Google Scholar 

  • Khalid, S. A., Farouk, A., Geary, T. G., and Jensen, J. B., 1986, Potential antimalarial candidates from African plants: An in vitro approach using Plasmodium falciparum, Journal of Ethnopharmacology, 15:201–209.

    Article  PubMed  CAS  Google Scholar 

  • Khalid, S. A., Duddeck, H., and Gonzalez-Sierra, M., 1989, Isolation and characterization of an antimalarial agent of the neem tree Azadirachta indica, Journal of Natural Products, 52(5):922–927.

    Article  PubMed  CAS  Google Scholar 

  • Kinnamon, K. E., Steck, E. A., and Rane, D. S., 1979, Activity of antitumor drugs against African trypanosomes, Antimicrobial Agents and Chemotherapy, 15(2):157–160.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, G. C., O’Neill, M. J., Phillipson, J. D., and Warhurst, D. C., 1989, In vitro studies on the mode of action of quassinoids with activity against chloroquine-resistant Plasmodium falciparum, Biochemical Pharmacology, 38(24):4367–4374.

    Article  PubMed  CAS  Google Scholar 

  • Klayman, D. L., 1985, Qinghaosu (artemisinin): An antimalarial drug from China, Science, 228:1049–1055.

    Article  PubMed  CAS  Google Scholar 

  • Koepfli, J. B., Mead, J. F., and Brockman, J. A., Jr., 1947, An alkaloid with high antimalarial activity from Dichroa febrífuga, Journal of the American Chemical Society, 69:1837.

    Article  PubMed  CAS  Google Scholar 

  • Koepfli, J. B., Mead, J. F., and Brockman, J. A., Jr., 1949, Alkaloids of Dichroa febrífuga. I. Isolation and degradative studies, Journal of the American Chemical Society, 71:1048–1054.

    Article  PubMed  CAS  Google Scholar 

  • Kogiso, S., Wada, K., and Munakata, K., 1976, Nematocidal polyacetylenes, 3Z, 11E-and 3E, 11E-trideca-1,3,11-triene from Carthamus tinctorius L., Tetrahedron Letters, 2:109–110.

    Article  Google Scholar 

  • Krogsgaard-Larsen, P., and Honore, T., 1983, Glutamate receptors and new glutamate agonists, Trends in Pharmacological Sciences, 31:33–36.

    Google Scholar 

  • Kuehl, F. A., Spencer, C. F., and Folkers, K., 1948, Alkaloids of Dichroa febrífuga Lour, Journal of the American Chemical Society, 70:2091–2093.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni, S. K., Dandiya, P. C., and Varandani, N. L., 1972, Pharmacological investigations of berberine sulphate, Japanese Journal of Pharmacology, 22:11–16.

    Article  PubMed  CAS  Google Scholar 

  • Le, W. J., You, J. Q., and Mei, J. Y., 1983, Chemotherapeutic effect of artesunate in experimental schistosomiasis, Acta Pharmacologica Sinica, 18:619–621.

    CAS  Google Scholar 

  • Le, W. J., You, J. Q., Yang, Y. Q., Mei, J. Y., Guo, H. F., Yang, H. Z., and Zhang, W. W., 1982, Studies on the efficacy of artemether in experimental schistosomiasis, Acta Pharmacologica Sinica, 17:187–193.

    CAS  Google Scholar 

  • Leake, C. D., 1975, An historical account of pharmacology to the 20th century, Charles C. Thomas, Springfield, Illinois, 210 p.

    Google Scholar 

  • Lebouef, M., Cave, A., Forgacs, P., Tiberghien, R., Provost, J., Touche, A., and Jacquemin, H., 1982, Alcaloides des annonacees XL: Etude chimique et pharmacologique des alcaloides de l’Annona montana Macf, Plantes Medicinales et Phytotherapie, 16(3): 169–184.

    Google Scholar 

  • Leon, L., Vasconcellos, M. E., Leon, W., Cruz, F. S., Docampo, R., and de Souza, W., 1978, Trypanosoma cruzi: Effect of olivacine on macromolecular synthesis, ultrastructure, and respiration of epimastigotes, Experimental Parasitology, 45:151–159.

    Article  PubMed  CAS  Google Scholar 

  • LePecq, J. B., Dat-Xuong, N., Gosse, C., and Paoletti, C., 1974, New antitumoral agent, 9-hydroxy-ellipticine; possibility of a rational design of anticancerous drugs in the series of DNA intercalating drugs, Proceedings of the National Academy of Sciences U.S.A., 71:5078–5082.

    Article  CAS  Google Scholar 

  • Levander, O. A., Ager, A. L., Jr., Morris, V. C., and May, R. G., 1989, Qinghaosu, dietary vitamin E, selenium, and cod-liver oil: Effect on the susceptibility of mice to the malarial parasite Plasmodium yoelii, American Journal of Clinical Nutrition, 50(2):346–352.

    PubMed  CAS  Google Scholar 

  • Lin, A. J., Klayman, D. L., and Milhous, W. K., 1987, Antimalarial activity of new water-soluble dihydroartemisinin derivatives, Journal of Medicinal Chemistry, 30:2147–2150.

    Article  PubMed  CAS  Google Scholar 

  • Lin, A. J., Lee, M., and Klayman, D. L., 1989, Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 2. Stereospecificity of the ether side chain, Journal of Medicinal Chemistry, 32:1249–1252.

    Article  PubMed  CAS  Google Scholar 

  • Lin, A. J., Li, L. Q., Klayman, D. L., George, C. F., and Flippen-Anderson, J. L., 1990, Antimalarial activity of new water-soluble dihydroartemisinin derivatives. 3. Aromatic amine analogs, Journal of Medicinal Chemistry, 33(9):2610–2614.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F., and Pan, H., 1989, Peroxidative antimalarial mechanism of sodium artesunate, Zhongguo Yixue Kexueyuan Xuebao, 11(3): 180–184.

    CAS  Google Scholar 

  • Liu, J. M., Ni, M. Y., Fan, J. F., Tu, Y. Y., Wu, Z. H., Wu, Y. L, and Chou, W. S., 1979, Structure and reaction of arteannuin, Hua Hsueh Hsueh Pao, 37(2):129–143.

    CAS  Google Scholar 

  • Liu, J. S., 1979, Identification of kainic acid in extracts from Caloglossa liprieurii, Yaoxue Tongboa, 14:256–257.

    Google Scholar 

  • Lopes, J. N., Cruz, F. S., Docampo, R., Vasconcellos, M. E., Sampaio, M. C. R., Pinto, A. V., and Gilbert, B., 1978, In vitro and in vivo evaluation of the toxicity of 1,4-naphthoquinone and 1,2-naphthoquinone derivatives against Trypanosoma cruzi, Annals of Tropical Medicine and Parasitology, 72(6):523–531.

    PubMed  CAS  Google Scholar 

  • Luo, X. D., and Shen, C. C., 1987, The chemistry, pharmacology and clinical applications of qinghaosu (artemisinin) and its derivatives, Medicinal Research Reviews, 7(1):29–52.

    Article  PubMed  CAS  Google Scholar 

  • Maries, R. J., Farnsworth, N. R., and Neill, D. A., 1989, Isolation of a novel cytotoxic polyacetylene from a traditional anthelminthic medicinal plant, Minquartia guianensis, Journal of Natural Products, 52:261–266.

    Article  Google Scholar 

  • Meshnick, S. R., Tsang, T. W., Lin, F. B., Pan, H. Z., Chang, C. N., Kuypers, F., Chiu, D., and Lubin, B., 1989, Activated oxygen mediates the antimalarial activity of qinghaosu, Progress in Clinical Biology Research, 313:95–104.

    CAS  Google Scholar 

  • Mirelman, D., Monheit, D., and Varon, S., 1987, Inhibition of growth of Entamoeba histolytica by allicin, the active principle of garlic extract (Allium sativum), Journal of Infectious Diseases, 156(1):243–244.

    Article  PubMed  CAS  Google Scholar 

  • Monjour, L., Rouquier, F., Alfred, C., and Polonsky, J., 1987, Essais de traitement du paludisme murin experimental par un quassinoide, la glaucarubinone, Comptes Rendus de l’Academe des Sciences (Paris), Serie III, 304(6): 129–132.

    CAS  Google Scholar 

  • Montamat, E. E., Burgos, C., Gerez de Burgos, N. M., Rovai, L. E., Blanco, A., and Segura, E. L., 1982, Inhibitory action of gossypol on enzymes and growth of Trypanosoma cruzi, Science, 218:288–289.

    Article  PubMed  CAS  Google Scholar 

  • Myint, P. T., Shwe, T., Soe, L., Htut, Y., and Myint, W., 1989, Clinical study of the treatment of cerebral malaria with artemether (qinghaosu derivative), Transactions of the Royal Society of Tropical Medicine and Hygiene, 83:72.

    Article  Google Scholar 

  • N’dounga, M., Balansard, G., Babadjamian, A, Timon-David, P., Gasquet, M., and Boudon, G., 1983, Contribution a l’etude de Bidens pilosa L. Identification et activite antiparasitaire de la phenyl-1 heptatriyne-1,3,5, Plantes Medicinales et Phytotherapie, 17(2):64–75.

    Google Scholar 

  • Naing, U. T., Win, U. H., Nwe, D. Y. Y., Myint, U. P. T., and Shwe, U. T., 1988, The combined use of artemether, sulfadoxine and pyrimethamine in the treatment of uncomplicated falciparum malaria, Transactions of the Royal Society of Tropical Medicine and Hygiene, 82:530–531.

    Article  Google Scholar 

  • Neal, R. A., 1964, Chemotherapy of cutaneous leishmaniasis: Leishmania tropica infections in mice, Annals of Tropical Medicine and Parasitology, 58:420.

    PubMed  CAS  Google Scholar 

  • Neal, R. A., 1970, Effect of emetine and related compounds on experimental cutaneous leishmaniasis, Annals of Tropical Medicine and Parasitology, 64(2):159–165.

    PubMed  CAS  Google Scholar 

  • Neal, R. A., and Croft, S. L., 1984, An in vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani, Journal of Antimicrobial Chemotherapy, 14:463–475.

    Article  PubMed  CAS  Google Scholar 

  • Nkunya, M. H. H., Weenen, H., Koyi, N. J., Thijs, L., and Zwanenburg, B., 1987, Cyclohexene epoxides, (+)-pandoxide, (+)- β-senepoxide and (-)-pipoxide, from Uvaria pandensis, Phytochemistry, 26(9):2563–2565.

    Article  CAS  Google Scholar 

  • O’Neill, M. J., 1986, Phytoalexins: Antiparasitics of higher plants, Parasitology Today, 2:358–359.

    Article  PubMed  Google Scholar 

  • O’Neill, M. J., and Phillipson, J. D., 1989, Plants as sources of antimalarial compounds, Revista Latinoamericana de Química, 20(3–4):111–118.

    Google Scholar 

  • O’Neill, M. J., Boardman, P., Chan, K. L., Bray, D. H., Phillipson, J. D., and Warhurst, D. C., 1985, Antimalarial activity of Brucea javanica fruits, Journal of Pharmacy and Pharmacology (Supplement), 37:49 p.

    Article  Google Scholar 

  • O’Neill, M. J., Bray, D. H., Boardman, P., Phillipson, J. D., Warhurst, D. C., Peters, W., and Suffness, M., 1986, Plants as sources of antimalarial drugs: In vitro antimalarial activities of some quassinoids, Antimicrobial Agents and Chemotherapy, 30(1): 101–104.

    Article  PubMed  Google Scholar 

  • O’Neill, M. J., Bray, D. H., Bordman, P., Wright, C. W., Phillipson, J. D., Warhurst, D. C., Gupta, M. P., Correya M., and Solis, P., 1987a, The activity of Simarouba amara against chloroquine-resistant Plasmodium falciparum in vitro, Journal of Pharmacy and Pharmacology (Supplement), 39:80 p.

    Google Scholar 

  • O’Neill, M. J., Bray, D. H., Boardman, P., Chan, K. L., and Phillipson, J. D., 1987b, Plants as sources of antimalarial drugs. Part 4. Activity of Brucea javanica fruits against chloroquine-resistant Plasmodium falciparum in vitro and against Plasmodium berghei in vivo, Journal of Natural Products, 50(1):41–48.

    Article  PubMed  Google Scholar 

  • O’Neill, M. J., Bray, D. H., Bordman, P., Wright, C. W., Phillipson, J. D., Warhurst, D. C., Gupta, M. P., Correya, M., and Sous, P., 1988, Plants as sources of antimalarial drugs. Part 6. Activities of Simarouba amara fruits, Journal of Ethnopharmacology, 22:183–190.

    Article  PubMed  Google Scholar 

  • Pan, P. C., Fang, S. D., and Tsai, C. C., 1976, Chemical synthesis of quisqualic acid, Scientia Sinica, 19:691–701.

    CAS  Google Scholar 

  • Partridge, S. J., Russell, P. F., Kirby, G. C., Bray, D. H., Warhurst, D. C., Phillipson, J. D., O’Neill, M. J., and Schiff, P. L., 1988, In vitro antimalarial activity of Triclisia patens and of some of its constituent alkaloids, Journal of Pharmacy and Pharmacology (Supplement), 40:53 p.

    Article  Google Scholar 

  • Pavanand, K., Nutakul, W., Dechatiwongse, T., Yoshihira, K., Yongvanitchit, K., Scovill, J. P., Flippen-Anderson, J. L., Gilardi, R., George, C., Kanchanapee, P., and Webster, H. K., 1986, In vitro antimalarial activity of Brucea javanica against multi-drug resistant Plasmodium falciparum, Planta Medica, 52(2):108–111.

    Article  Google Scholar 

  • Pavanand, K., Yongvanitchit, K., Webster, H. K., Dechatiwongse, T., Nutakul, W., Jewvachdamrongkul, Y., and Bansiddhi, J., 1988, In vitro antimalarial activity of a Thai medicinal plant Picrasma javanica Bl., Phytotherapy Research, 2(1):33–36.

    Article  CAS  Google Scholar 

  • Pavanand, K., Webster, H. K., Yongvanitchit, K., and Dechatiwongse, T., 1989a, Antimalarial activity of Tiliacora triandra Diels against Plasmodium falciparum in vitro, Phytotherapy Research, 3(5):215–217.

    Article  CAS  Google Scholar 

  • Pavanand, K., Webster, H. K., Yongvanitchit, K., Kun-anake, A, Dechatiwongse, T., Nutakul, W., and Bansiddhi, J., 1989b, Schizontocidal activity of Celastrus paniculatus Willd. against Plasmodium falciparum in vitro, Phytotherapy Research, 3(4): 136–139.

    Article  CAS  Google Scholar 

  • Pei-Gen, X., and Keji, C., 1988, Recent advances in clinical studies of Chinese medicinal herbs. 2. Clinical trials of Chinese herbs in a number of chronic conditions, Phytotherapy Research, 1(2):55–62.

    Article  Google Scholar 

  • Pei-Gen, X., and Shan-Lin, F., 1986, Traditional antiparasitic drugs in China, Parasitology Today, 2(12):353–355.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffman, M. A, and Klein, R. L., 1966, Effects of amoebicides on growth of Acanthamoeba sp. (30824), Proceedings of the Society of Experimental Biology and Medicine, 121:539–541.

    Article  CAS  Google Scholar 

  • Phillips, R. E., Warrell, D. A, White, N. J., Looareesuwan, S., and Karbwang, J., 1985, Intravenous quinidine for the treatment of severe falciparum malaria: Clinical and pharmacokinetic studies, New England Journal of Medicine, 312(20):1273–1278.

    Article  PubMed  CAS  Google Scholar 

  • Phillipson, J. D., and O’Neill, M. J., 1989, New leads to the treatment of protozoal infections based on natural product molecules, Acta Pharmaceutica Nordica, 1(3):131–144.

    CAS  Google Scholar 

  • Prasad, B. N. K., Bansal, I., Das, P., and Srivastava, R., 1984, Antiamoebic action of drugs and synthetic compounds against trophozoites of Entamoeba histolytica under axenic and polyxenic culture conditions and in the infected rat caecum, Current Science, 53(15):778–781.

    CAS  Google Scholar 

  • Pringle, H. L., Bradley, S. G., and Harris, L. S., 1979, Susceptibility of Naegleria fowled to Δ9-tetrahydrocannabinol, Antimicrobial Agents and Chemotherapy, 16(5):674–679.

    Article  PubMed  CAS  Google Scholar 

  • Qinghaosu Antimalaria Coordinating Research Group, 1979, Antimalaria studies on Qinghaosu, Chinese Medical Journal (Peking, English Edition), 92(12):811–816.

    Google Scholar 

  • Raj, R. K., and Kurup, P. A, 1967, Isolation of palasonin from the seeds of Butea frondosa, Indian Journal of Chemistry, 5:86–89.

    CAS  Google Scholar 

  • Rao, S. S., and Grollman, A. P., 1967, Cycloheximide resistance in yeast: A property of the 60s ribosomal subunit, Biochemical and Biophysical Research Communications, 29(5):696–704.

    Article  PubMed  CAS  Google Scholar 

  • Remb, H., and Garcia, E. S., 1989, Azadirachtin inhibits Trypanosoma cruzi infection of its triatomine insect host, Rhodnius prolixus, Naturwissenschaften, 76(2):77–78.

    Article  Google Scholar 

  • Rich, J. R., Keen, N. T., and Thomason, I. J., 1977, Association of coumestans with the hypersensitivity of lima bean roots to Pratylenchus scribneri, Physiology and Plant Pathology, 10:105–116.

    Article  CAS  Google Scholar 

  • Robert-Gero, M., Bachrach, U., Bhatnagar, S., and Polonsky, J., 1985, Inhibition in vitro de la croissance des promastigotes de Leishmania donovani par des quassinoides, Comptes Rendus de l’Academe des Sciences (Paris), Serie II, 300(16):803–806.

    Google Scholar 

  • Rochanakij, S., Thebtaranonth, Y., Yenjai, C., and Yuthavong, Y., 1985, Nimbolide, a constituent of Azadirachta indica, inhibits Plasmodium falciparum in culture, Southeast Asian Journal of Tropical Medicine and Public Health, 16(1):66–72.

    PubMed  CAS  Google Scholar 

  • Rodriguez, E., Aregullin, T., Nishida, T., Uehara, S., Wrangham, R., Abramowski, Z., Finlayson, A, and Towers, G. H. N., 1985, Thiarubrine A, a bioactive constituent of Aspilia (Asteraceae) consumed by wild chimpanzees, Experentia, 41:419–420.

    Article  CAS  Google Scholar 

  • Rohrer, S. P., Evans, D. V., and Bergstrom, A. R., 1990, A membrane associated glutamate binding protein from Caenorhabditis elegans and Haemonchus contortus, Comparative Biochemistry and Physiology, 95C:223–228.

    CAS  Google Scholar 

  • Rovai, L. E., Aoki, A, Gerez de Burgos, N. M., and Blanco, A, 1990, Effect of gossypol on trypomastigotes and amastigotes of Trypanosoma cruzi, Journal of Protozoology, 37(4):280–286.

    PubMed  CAS  Google Scholar 

  • Rubinchik, M. A., Rybalko, K. S., Evstratova, R. I., and Konovalova, O. A., 1976, Sesquiterpene lactones of higher plants as a possible source of new antiprotozoal drugs, Rastitelnye Resursy, 12:170–181.

    CAS  Google Scholar 

  • Sabchareon, A., Chongsuphajaisiddhi, T., Sinhasivanon, V., Chanthavanich, P., and Attanath, P., 1988, In vivo and in vitro responses to quinine and quinidine of Plasmodium falciparum, Bulletin of the World Health Organization, 66(3):347–352.

    PubMed  CAS  Google Scholar 

  • Salem, F. S., 1980, Evaluation of clove oil and some of its derivatives as trichomonacidal agents, Journal of Drug Research in Egypt, 12(1–2):115–119.

    CAS  Google Scholar 

  • Schaeffer, J. M., White, T., Bergstrom, A. R., Wilson, K. E., and Turner, M. J., 1990, Identification of glutamate-binding sites in Caenorhabditis elegans, Pesticide Biochemistry and Physiology, 36:220–228.

    Article  CAS  Google Scholar 

  • Seeler, A. O., Dusenbery, E., and Malanga, G, 1943, The comparative activity of quinine, quinidine, cinchonine, cinchonidine and quinoidine against Plasmodium lophurae infections in Pekin ducklings, Journal of Pharmacology and Experimental Therapeutics, 78:159–163.

    CAS  Google Scholar 

  • Seery, T. M., and Bieter, R. N., 1940, A contribution to the pharmacology of berberine, Journal of Pharmacology and Experimental Therapeutics, 69:64–67.

    Google Scholar 

  • Sharma, G. L., and Bhutani, K. K., 1988, Plant based antiamoebic drugs. Part II. Amoebicidal activity of parthenin isolated from Parthenium hysterophorus, Planta Medica, 54(2): 120–122.

    Article  PubMed  CAS  Google Scholar 

  • Shu, G. X. and Liang, X. T., 1980, Identification of 28-deacetyl-sendanin as the active component of Melia toosendan, Acta Chimica Sinica, 38:196–197.

    CAS  Google Scholar 

  • Shwe, T., Myint, P. T., Myint, W., Htut, Y., Soe, L., and Thwe, M., 1989, Clinical studies on treatment of cerebral malaria with artemether and mefloquine, Transactions of the Royal Society of Tropical Medicine and Hygiene, 83:489.

    Article  PubMed  CAS  Google Scholar 

  • Sinderson, H. G, 1924, Emetine hydrochloride in the treatment of oriental sore, Transactions of the Royal Society of Tropical Medicine and Hygiene, 18:108.

    Article  Google Scholar 

  • Smrkovski, L. L., Buck, R. L., Alcantara, A. K., Rodriguez, G S., and Uylangco, G V., 1985, Studies of resistance to chloroquine, quinine, amodioquine and mefloquine among Philippine strains of Plasmodium falciparum, Transactions of the Royal Society of Tropical Medicine and Hygiene, 79:37–41.

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah, T. V., and Amin, A. H., 1967, Effect of berberine sulphate on Entamoeba histolytica, Nature, 215:527–528.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, K., Kato, M., Izumo, A., Hagiwara, A., and Doi, S., 1990, Plasmodium chabaudi: In vivo effects of calcium antagonists on chloroquine-resistant and chloroquine-sensitive parasites, Experimental Parasitology, 70(4):419–426.

    Article  PubMed  CAS  Google Scholar 

  • Tani, S., Fukamiya, N., Kiyokawa, H., Musallam, H. A., Pick, R. O., and Lee, K. H., 1985, Antimalarial agents. 1. α-Santonin-derived cyclic peroxide as potential antimalarial agent, Journal of Medicinal Chemistry, 28:1743–1744.

    Article  PubMed  CAS  Google Scholar 

  • Trager, W., and Polonsky, J., 1981, Antimalarial activity of quassinoids against chloroquine-resistant Plasmodium falciparum in vitro, American Journal of Tropical Medicine and Hygiene, 30(3):531–537.

    PubMed  CAS  Google Scholar 

  • Vasanth, S., Gopal, R. H., and Rao, R. B., 1990, Plant antimalarial agents, Journal of Scientific and Industrial Research, 49(2):68–77.

    CAS  Google Scholar 

  • Veech, J. A., 1979, Histochemical localization and nematotoxicity of terpenoid aldehydes in cotton, Journal of Nematology, 11:240–246.

    PubMed  CAS  Google Scholar 

  • Veech, J. A., 1982, Phytoalexins and their role in the resistance of plants to nematodes, Journal of Nematology, 14:2–9.

    PubMed  CAS  Google Scholar 

  • Veech, J. A., and McClure, M. A., 1977, Terpenoid aldehydes in cotton roots susceptible and resistant to the root knot nematode, Meloidogyne incognita, Journal of Nematology, 9:225–229.

    PubMed  CAS  Google Scholar 

  • Vennerstrom, J. L., and Klayman, D. L., 1988, Protoberberine alkaloids as antimalarials, Journal of Medicinal Chemistry, 31:1084–1087.

    Article  PubMed  CAS  Google Scholar 

  • Vichkanova, S. A., Rubinchik, M. A., Adgina, V. V., and Fedorchenko, T. S., 1969, Chemotherapeutic action of sanguinarine, Farmakologiya i Toksikologiya, 32:325–328.

    CAS  Google Scholar 

  • Waddell, T. G., Woods, L. A., Harrison, W., and Meyer, G. M., 1984, Aliphatic esters of quinine: Screening for antiplasmodial activity, Journal of the Tennessee Academy of Science, 59(3):48–50.

    CAS  Google Scholar 

  • Warhurst, D. G., 1981, The quinine-haemin interaction and its relationship to antimalarial activity, Biochemical Pharmacology, 30(24) 3323–3327.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, T. I., 1958, The chemotherapy of helminthiasis, Journal of Pharmacy and Pharmacology, 10:209–227.

    Article  PubMed  CAS  Google Scholar 

  • Werbel, L. M., and Worth, D. F., 1980, Antiparasitic agents, Annual Reports in Medicinal Chemistry, 15:120–129.

    Article  CAS  Google Scholar 

  • Whaun, J. M., and Brown, N. D., 1990, Treatment of chloroquine resistant malaria with esters of cephalotaxine: Homoharringtonine, Annals of Tropical Medicine and Parasitology, 84(3):229–237.

    PubMed  CAS  Google Scholar 

  • White, N., Looareesuwan, S., Warrell, D. A., Chongsuphajaisiddhi, T., Bunnag, D., and Harinasuta, T., 1981, Quinidine in falciparum malaria, Lancet, 2:1069–1071.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, J., and Scott-Finnigan, T. J., 1978, Trypanocidal activity of antitumor antibiotics and other metabolic inhibitors, Antimicrobial Agents and Chemotherapy, 13(5):735–744.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, A. D., Allison, R. G., and Hahn, F. E., 1972, Labilizing action of intercalating drugs and dyes on bacterial ribosomes, Biochemistry, 11(9): 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  • Woolfe, G., 1963, Chemotherapy of amoebiasis, p. 355–443, in: “Experimental Chemotherapy,” Volume 1, R. J. Schnitzer and F. Hawking, eds., Academic Press, New York, New York.

    Google Scholar 

  • Wright, C W., O’Neill, M. J., Phillipson, J. D., and Warhurst, D. C., 1988, Use of microdilution to assess in vitro antiamoebic activities of Brucea javanica fruits, Simarouba amara stem, and a number of quassinoids, Antimicrobial Agents and Chemotherapy, 32(11):1725–1729.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, P.-G., and Fu, S.-L., 1986, Traditional antiparasitic drugs in China, Parasitology Today, 2:333–335.

    Google Scholar 

  • Xiao, S., and Catto, B. A., 1989, In vitro and in vivo studies of the effect of artemether on Schistosoma mansoni, Antimicrobial Agents and Chemotherapy, 33:1557–1562.

    Article  PubMed  CAS  Google Scholar 

  • Xihe, T., 1979, Development of natural products as antimalarial agents, Proceedings of the U.S.-China Pharmacology Symposium, October 29–31, 1979, National Academy of Sciences, Washington, D.C., p. 137–141.

    Google Scholar 

  • Xu, Q. C., 1982, Advances in the study of antimalarial agents from plants, Yao Hsueh Tung Pao, 17(9):544–547.

    CAS  Google Scholar 

  • Xu, Q. C., 1983, A distributive survey of antimalaria constituents in plants, Chung Ts’ao Yao, 14(2):93–95.

    CAS  Google Scholar 

  • Xu, R.-S., Snyder, J. K., and Nakanishi, K., 1984, Robustadials A and B from Eucalyptus robusta, Journal of the American Chemical Society, 106(3):734–736.

    Article  CAS  Google Scholar 

  • Ye, Z., and Van Dyke, K., 1989, Selective antimalarial activity of tetrandrine against chloroquine resistant Plasmodium falciparum, Biochemical and Biophysical Research Communications, 159(1):242–248.

    Article  PubMed  CAS  Google Scholar 

  • Ye, Z., Van Dyke, K., and Castranova, V., 1989, The potentiating action of tetrandrine in combination with chloroquine or qinghaosu against chloroquine-sensitive and resistant falciparum malaria, Biochemical and Biophysical Research Communications, 165(2):758–765.

    Article  PubMed  CAS  Google Scholar 

  • You, J. Q., Le, W. J., and Mei, J. Y., 1982, Studies on the efficacy of agrimophol and cucurbitine on experimental schistosomiasis, Acta Pharmaceutica Sinica, 17:663–666.

    PubMed  CAS  Google Scholar 

  • Zemek, J., Valent, M., Podova, M., Kosikova, B., and Joniak, D., 1987, Antimicrobial properties of aromatic compounds of plant origin, Folia Microbiología, 32:421–425.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borris, R.P., Schaeffer, J.M. (1992). Antiparasitic Agents from Plants. In: Nigg, H.N., Seigler, D. (eds) Phytochemical Resources for Medicine and Agriculture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2584-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2584-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2586-2

  • Online ISBN: 978-1-4899-2584-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics