Skip to main content

Electrical Breakdown of Lipid Bilayer Membranes

Phenomenology and Mechanism

  • Chapter
Electroporation and Electrofusion in Cell Biology

Abstract

It is known that in the case of a sufficiently strong polarization of cell membranes by an external electric field, processes develop in a membrane which lead to a very significant increase in conductance and permeability. When the field is switched off, the membrane can return from such a high-conducting state to the initial one. This phenomenon is called reversible electrical breakdown (Stampfli, 1958; Zimmermann, 1982). If the amplitude or duration of a pulse is sufficiently large, irreversible damage of the cell membranes occurs. Interest in the study of this phenomenon is based on the existence of important biotechnological applications, many of which have been reflected in this collective book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abidor, I. G., Arakelyan, V. B., Chernomordik, L. V., Chizmadzhev, Y. A., Pastushenko, V. F., and Tarasevich, M. R., 1979, Electric breakdown of bilayer lipid membrane. I. The main experimental facts and their qualitative discussions, Bioelectrochem. Bioenerg. 6:37–52.

    Article  CAS  Google Scholar 

  • Abidor, I. G., Sukharev, S. I., Chernomordik, L. V., and Chizmadzhev, Y. A., 1982, The reversible electrical breakdown of bilayer lipid membranes modified by UO2+ 2 ions, Bioelectrochem. Bioenerg. 9:141–148.

    Article  CAS  Google Scholar 

  • Arakelyan, V. B., Chizmadzhev, Y. A., and Pastushenko, V. F., 1979, Electric breakdown of bilayer lipid membrane. V. Consideration of the kinetic stage in the case of the membrane containing arbitrary number of defects, Bioelectrochem. Bioenerg. 6:81–88.

    Article  CAS  Google Scholar 

  • Benz, R., and Conti, F., 1981, Reversible electrical breakdown of squid giant axon membrane, Biochim. Biophys. Acta 645:115–123.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1980a, Pulse-length dependence of the electrical breakdown in lipid bilayer membranes, Biochim. Biophys. Acta 597:637–642.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1980b, Relaxation studies on cell membranes and lipid bilayers in the high electric field range, Bioelectrochem. Bioenerg. 7:723–739.

    Article  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1981, The resealing process of lipid bilayers after reversible electrical breakdown, Biochim. Biophys. Acta 640:169–178.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., Beckers, F., and Zimmermann, U., 1979, Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study, J. Membr. Biol. 48:181–204.

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik, L. V., and Abidor, I. G., 1980, The voltage-induced local defects in unmodified bilayer lipid membrane, Bioelectrochem. Bioenerg. 7:617–623.

    Article  CAS  Google Scholar 

  • Chernomordik, L. V., Sukharev, S. I., Abidor, I. G., and Chizmadzhev, Y. A., 1982, The study of the BLM reversible electrical breakdown mechanism in the presence of UO2+ 2 ions, Bioelectrochem. Bioenerg. 9:149–155.

    Article  CAS  Google Scholar 

  • Chernomordik, L. V., Sukharev, S. I., Abidor, I. G., and Chizmadzhev, Y. A., 1983, Breakdown of lipid bilayer membranes in an electric field, Biochim. Biophys. Acta 736:203–213.

    Article  CAS  Google Scholar 

  • Chernomordik, L. V., Kozlov, M. M., Melikyan, G. B., Abidor, I. G., Markin, V. S., and Chizmadzhev, Y. A., 1985, The shape of lipid molecules and monolayer membrane fusion, Biochim. Biophys. Acta 812:643–655.

    Article  CAS  Google Scholar 

  • Chernomordik, L. V., Sukharev, S. I., Popov, S. V., Pastushenko, V. F., Sokirko, A. V., Abidor, I. G., and Chizmadzhev, Y. A., 1987, The electrical breakdown of cell and lipid membranes: The similarity of phenomenologies, Biochim. Biophys. Acta 902:360–373.

    Article  PubMed  CAS  Google Scholar 

  • Chizmadzhev, Y. A., Arakelyan, V. B., and Pastushenko, V. F., 1979, Electric breakdown of bilayer lipid membranes. III. Analysis of possible mechanisms of defect origination, Bioelectrochem. Bioenerg. 6:63–71.

    Article  CAS  Google Scholar 

  • Conti, F., Fioravanti, R., and Wanke, E., 1973, Breakdown dielettrico della membrana dell assone gigante di calamaro, in: Atti della Prima Riunione Scientifica Plenaria della Societa di Biofisica Pura e Applicata, Camogli, pp. 401-412.

    Google Scholar 

  • Derzhanski, A., Petrov, A. G., and Mitov, M. D., 1979, Electric field induced pores in erythrocyte mem-brane—a discussion, in: Proceedings of the Fifth School on Biophysics of Membrane Transport, Wroclaw, Poland, pp. 285–286.

    Google Scholar 

  • Dimitrov, D. S., 1984, Electric field-induced breakdown of lipid bilayers and cell membranes: A thin viscoelastic film model, J. Membr. Biol. 78:53–60.

    Article  PubMed  CAS  Google Scholar 

  • Dressier, V., Shwister, K., Haest, C. W. M., and Deuticke, B., 1983, Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids, Biochim. Biophys. Acta 732:304–307.

    Article  Google Scholar 

  • Glaser, R. W., Wagner, A., and Donath, E., 1986, Volume and ionic composition changes in erythrocytes after electric breakdown: Simulation and experiment, Bioelectrochem. Bioenerg. 16:455–470.

    Article  CAS  Google Scholar 

  • Harbich, W., and Helfrich, W., 1979, Alignment and opening of giant lecithin vesicles by electric field, Z. Naturforsch. 34a: 1063–1065.

    Google Scholar 

  • Kinosita, K., and Tsong, T. Y., 1977a, Voltage-induced pore formation and haemolysis of human erythrocytes, Biochim. Biophys. Acta 471:227–242.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., and Tsong, T. Y., 1977b, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature 268:438–441.

    Article  PubMed  Google Scholar 

  • Leikin, S. L., Glaser, R. W., and Chernomordik, L. V., 1986, Mechanism of pore formation under electrical breakdown of membranes, Biol. Membr. 3:944–951.

    CAS  Google Scholar 

  • Mueller, P., Rudin, D. O., Tien, H. T., and Wescott, W. C., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194:979–980.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, E., Shaefer-Ridder, M., Wang, Y., and Hofschneider, P. H., 1982, Gene transfer into mouse lyoma cells by electroporation in high electric fields, EMBO J. 1:841–845.

    PubMed  CAS  Google Scholar 

  • Parsegian, V. A., 1969, Energy of an ion crossing a low dielectric membrane: Solution to four relevant electrostatic problems, Nature 221:844–846.

    Article  PubMed  CAS  Google Scholar 

  • Pastushenko, V. F., and Chizmadzhev, Y. A., 1983, Electrical breakdown of lipid vesicles, Biofizika 28:1036–1039.

    PubMed  CAS  Google Scholar 

  • Pastushenko, V. F., and Petrov, A. G., 1984, Electro-mechanical mechanism of pore formation in bilayer lipid membranes, in: Proceedings, Seventh School on Biophysics of Membrane Transport, Poland, pp. 69-81.

    Google Scholar 

  • Pastushenko, V. F., Chizmadzhev, Y. A., and Arakelyan, V. B., 1979, Electric breakdown of bilayer lipid membranes. II. Calculation of the membrane lifetime in the steady-state diffusion approximation, Bioelectrochem. Bioenerg. 6:53–63.

    Article  CAS  Google Scholar 

  • Petrov, A. G., Mitov, M. D., and Derzhanski, A., 1980, Edge energy and pore stability in bilayer lipid membranes, in: Advances of Liquid Crystal Research Applications, Volume 1 (L. Bata, ed.), Pergamon Press, New York, pp. 605–626.

    Google Scholar 

  • Powell, K. T., Derrick, E. G., and Weaver, J. C., 1986, A quantitative theory of reversible electrical breakdown in bilayer membranes, Bioelectrochem. Bioenerg. 15:243–255.

    Article  Google Scholar 

  • Sowers, A. E., and Lieber, M. R., 1986, Electropore diameters, lifetimes, numbers and locations in individual erythrocyte ghosts, FEBS Lett. 205:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Stampfli, R., 1958, Reversible electrical breakdown of the excitable membrane of a Ranvier node, Ann. Acad. Bras. Cien. 30:57–63.

    Google Scholar 

  • Sugar, I. P., and Neumann, E., 1984, Stochastic model for electric field-induced membrane pores—Elec-troporation, Biophys. Chem. 19:211–225.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev, S. I., Chernomordik, L. V., and Abidor, I. G., 1983, Reversible electrical breakdown of holoturin modified bilayer lipid membranes, Biofizika 28:423–426.

    PubMed  CAS  Google Scholar 

  • Tsong, T. Y., 1983, Voltage modulation of membrane permeability and energy utilization in cells, Biosci. Rep. 3:487–505.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, J. C., Mintzer, R. A., Ling, H., and Sloan, S. R., 1986, Conduction onset criteria for transient aqueous pores and reversible electrical breakdown in bilayer membranes, Bioelectrochem. Bioenerg. 15:229–241.

    Article  Google Scholar 

  • Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694:227–277.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Scheurich, P., Pilwat, G., and Benz, R., 1981, Cells with manipulated functions: New perspectives for cell biology, medicine and technology, Angew. Chem. Int. Ed. Engl. 20:325–344.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chernomordik, L.V., Chizmadzhev, Y.A. (1989). Electrical Breakdown of Lipid Bilayer Membranes. In: Neumann, E., Sowers, A.E., Jordan, C.A. (eds) Electroporation and Electrofusion in Cell Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2528-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2528-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2530-5

  • Online ISBN: 978-1-4899-2528-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics