Skip to main content

Processing of Movement Information in the Fly’s Landing System: A Behavioral Analysis

  • Chapter
Neurobiology of Sensory Systems

Abstract

When approaching a landing site flies extend their legs in order to prevent crash-landing (Goodman 1960). This reflex has been analysed with respect to the underlying release mechanism. Pattern expansion in front of a tethered fly can mimic an approach towards a landing site. Under these conditions landing is a rather stereotyped motor pattern. Only the latency of the onset of the landing response varies with the stimulus strength (Borst 1986). Quantitative studies of the stimulus-latency relationship led to the formulation of a simple model which describes the way movement information at the fly’s retina is processed in order to release landing (Borst and Bahde 1986, 1988b). We propose that the output of local movement detectors sensitive for front-to-back motion in each eye are pooled and subsequently processed by a leaky integrator. Whenever the level of the leaky integrator reaches a fixed threshold landing is released.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borst A (1986) Time course of the houseflies’ landing response. Biol Cybern 54: 379–383.

    Article  Google Scholar 

  • Borst A, Bahde S (1986) What kind of movement detector is triggering the landing response of the housefly? Biol Cybern 55: 59–69.

    Article  Google Scholar 

  • Borst A, Bahde S (1988a) Spatio-temporal integration of motion-A simple strategy of safe landing in flies. Naturwissenschaften 75: 265–267.

    Article  Google Scholar 

  • Borst A, Bahde S (1988b) Visual information processing in the fly’s landing system. J Comp Physiol A 163: 167–173.

    Article  Google Scholar 

  • Braitenberg V, Taddei Ferretti C (1966) Landing reaction of Musca domestica induced by visual stimuli. Naturwissenschaften 53: 155–156.

    Article  PubMed  CAS  Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24: 85–101.

    Article  Google Scholar 

  • Eckert H, Hamdorf K (1980) Excitatory and inhibitory response components in the landing response of the blowfly, Calliphora erythrocephala. J Comp Physiol 138: 253–264.

    Article  Google Scholar 

  • Eckert H, Hamdorf K (1983) Does a homogeneous population of elementary movement detectors activate the landing response of blowflies, Calliphora erythrocephala? Biol Cybern 48: 11–18.

    Article  Google Scholar 

  • Egelhaaf M (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioral constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52: 123–140.

    Article  Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56: 69–87.

    Article  Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. TINS 11: 351–358.

    PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am: in press.

    Google Scholar 

  • Fischbach KF (1981) Habituation and sensitization of the landing response of Drosophila melanogaster. Naturwissenschaften 68: 332.

    Article  Google Scholar 

  • Götz KG (1972) Principles of optomotor reactions in insects. Bibl Ophthal 82: 251–259.

    PubMed  Google Scholar 

  • Goodman LJ (1960) The landing response of insects I. The landing response of the fly, Lucilla sericata, and other Calliphorinae. J Exp Biol 37: 854–878.

    Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b: 513–524.

    Google Scholar 

  • Hausen K (1984) The lobula complex of the fly: structure, function and significance in visual behavior. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 523–559.

    Chapter  Google Scholar 

  • Kunze P (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z Vergl Physiol 44: 656–684.

    Article  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press, Wiley and Sons Inc, New York London, pp 303–317.

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. II. Towards the neural circuitry. Biol Cybern 46 (Suppl): 1–30.

    Article  Google Scholar 

  • van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am A 1: 451–473.

    Article  PubMed  Google Scholar 

  • Tinbergen J (1987) Photoreceptor metabolism and visually guided landing behaviour of flies. Thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Wagner H (1982) Flow-field variable triggers landing in flies. Nature 297: 147.

    Article  Google Scholar 

  • Wehrhahn C, Hausen K, Zanker J (1981) Is the landing response of the housefly driven by motion of a flowfield? Biol Cybern 41: 91–99.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borst, A., Bahde, S. (1989). Processing of Movement Information in the Fly’s Landing System: A Behavioral Analysis. In: Singh, R.N., Strausfeld, N.J. (eds) Neurobiology of Sensory Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2519-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2519-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2521-3

  • Online ISBN: 978-1-4899-2519-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics