Skip to main content

Molecular Motion in Crystalline and Mesomorphous Phases of Large Size Cycloalkanes as a Model for Polyethylene

  • Chapter
Solid State NMR of Polymers

Abstract

Cycloalkanes with 22 to 96 units crystallize in lamellae, where two adjacent stems are connected by two tight folds. Before melting, they form mesophases, which can be described as conformationally disordered crystals (Condis crystals). Conformational disorder and molecular mobility in the solid and in the mesomorphic state have been studied using MAS 13C-NMR spectroscopy and 2H-NMR spectroscopy. In the case cyclodoeicosane and cyclotetraeicosane, MAS 13C-NMR spectra show that slow jump type reptation results in an exchange of the carbon atoms between stems and folds already in the crystalline state. Conformational disorder and fast molecular motion is observed for the mesophase. The exchange of methylene groups can occur with rates which are larger than 108s−1. The molecular dynamics in the mesophase is described by fluctuation of additional gauche conformations. The passage of a gauche-trans-gauche defect along the chain leads to small translational motion of the chain segment and can thus explain the translational diffusion of methylene groups from the inner part of the lamellae to the folds and vice versa. This observation of fast chain reptation through the lamellae may help to understand the formation of extended chain crystals in polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sperati, C. A. and Starkweather, J. R., Fortschr. Hochpolym. Forsch., 2, 465, 1961.

    Article  CAS  Google Scholar 

  2. Lau, S. F. and Wunderlich, B., J. Polym. Sci., Polym. Phys. Ed., 22, 379, 1984.

    Article  CAS  Google Scholar 

  3. Corradini, P. and Petracone, V., “Interaction Between Synthetic Polymer Molecules” in Ciba Foundation Symposium, Wolstenholme, G. E. W., O’Connor, M., Ed., p 173, Elsevier, Amsterdam, 1972.

    Google Scholar 

  4. Moller, M., Makromol. Chem., Rapid Comm., 9, 107, 1988.

    Article  Google Scholar 

  5. Kirkpatrick, D. E. and Wunderlich, B., J. Pol Sci., 24, 931, 1986.

    CAS  Google Scholar 

  6. Kogler, G.; Loufakis, K.; Bohnert, R. and Moller, M., in Integration of Fundamental Polymer Science and Technology, 3 Lemstra, P. J. and Kleintjens, L. A., Ed., Elsevier Applied Publishers, New York, in Press.

    Google Scholar 

  7. Papkov, V. S.; Godovsky, Y. K.; Swistunov, W. S.; Litvinov, V. M. and Zadanov, A. A., J. Pol. Sci., Polym. Chem. Edn., 22, 3617, 1984.

    Article  CAS  Google Scholar 

  8. Beatty, J.; Pochan, J. M.; Froix, M. F. and Hinan, D. D., Makromolecules, 8, 547, 1975.

    Article  Google Scholar 

  9. Yamamoto, T.; Miyaji, H. and Asai, K., Jap. J. Appl. Phys., 16, 1891, 1977.

    Article  CAS  Google Scholar 

  10. Hikosaka, M.; Minomura, S. and Seto, M., Japan J. Appl. Phys., 19, 1763, 1980.

    Article  CAS  Google Scholar 

  11. Wunderlich, B., Makromolecular Physics, Vol. 1, Academic Press, New York, 1973.

    Google Scholar 

  12. Schneider, N. S.; Desper, C. R. and Beres, J. J., in “Liquid Crystalline Order in Polymers”, Blumstein, A., Ed., Academic Press, New York, 1978, p 299.

    Chapter  Google Scholar 

  13. Broadhurst, M. J., J. Res. Natl. Bur. Stand, 66a, 241, 1962.

    Article  Google Scholar 

  14. Snyder, R. G.; Maroncelli, M. and Strauss, H. L., J. Chem. Phys., 82, 2811, 1985.

    Article  Google Scholar 

  15. Drotloff, H. and Moller, M., Thermochim. Acta., 112, 57, 1987.

    Article  CAS  Google Scholar 

  16. Drotloff, H.; Emeis, D.; Waldron, R. F. and Moller, M., Polymer, 28, 1199, 1987.

    Article  Google Scholar 

  17. Moller, M.; Oelfin, D. and Kogler, G., Polymer Preprints, 29, 38, Am. Chem. Soc., 1988.

    Google Scholar 

  18. Kogler, G.; Drotloff, H. and Moller, M., Mol. Cryst., Liqu. Cryst., 153, 179, 1987.

    Google Scholar 

  19. Moller, M.; Waldron, R. F.; Drotloff, H. and Kogler, G., in Integration of Fundamental Polymer Science and Technology, 2, Lemstra, P. J. and Kleintjens, L. A., Ed., Elsevier Applied Publishers, New York, 1988.

    Google Scholar 

  20. Wunderlich, B. and Grebowicz, J., Adv. in Pol. Sci., 60, 61, 1, 1984.

    Google Scholar 

  21. Wunderlich, B.; Moller, M.; Grebowicz, J. and Baur, H., Adv. in Pol. Sci., 87, 1, 1988.

    Article  Google Scholar 

  22. Wunderlich, B. and Arakawa, T., J. Polymer Sci., Part A, 2, 3703, 1964.

    Google Scholar 

  23. Gruner, C. L. and Wunderlich, B., J. Pol. Sci. Part A2, 7, 2099, 1969.

    Article  CAS  Google Scholar 

  24. Trzebiatowski, T.; Drager, M. and Strobl, G. R., Makromol. Chem., 183, 731, 1982.

    Article  CAS  Google Scholar 

  25. Drotloff, H.; Rotter, H.; Emeis, D. and Moller, M., J. Am. Chem. Soc., 109, 7797, 1987.

    Article  CAS  Google Scholar 

  26. Groth, P., Acta. Chem. Scand., A33, 199, 1979.

    Article  CAS  Google Scholar 

  27. Schill, G.; Zurcher, C. and Fritz, H., Chem. Ber., 111, 2910, 1978.

    Google Scholar 

  28. Moller, M.; Gronski, W.; Cantow, H.-J. and Hocker, H., J. Am. Chem. Soc., 106, 5093, 1984.

    Article  Google Scholar 

  29. Spiess, H. W. and Sillescu, H., J. Magn. Reson., 42, 381, 1980.

    Google Scholar 

  30. Moller, M.; Oelfin, D.; Drotloff, H. and Grossmann, J., to be published.

    Google Scholar 

  31. Grossmann, H. P., Polym. Bull., 5, 137, 1981.

    CAS  Google Scholar 

  32. Shannon, V., “IR-Spectroscopy Investigations of Medium Size Cycloalkanes”, Doctoral Thesis, University of California, Berkeley, CA, 1985.

    Google Scholar 

  33. Drotloff, H., “Struktur und Bewegungszustande von Cycloalkanen im kristallinen und mesomorphen Zustand. Eine Studie zum Festkorperverhalten von flexiblen Kettenmolekulen”, Doctoral Thesis, Freiburg, Federal Republic of Germany, 1987.

    Google Scholar 

  34. Ebelhauser, R. and Spiess, H. W., Ber Bunsenges. Phys Chem., 89, 1208, 1985.

    Article  Google Scholar 

  35. Huang, T. H.; Sharjune, R. P.; Wittebort, R. J.; Griffin, R. G. and Oldfield, E., J. Am. Chem. Soc., 102, 7377, 1980.

    Article  CAS  Google Scholar 

  36. Blume, A.; Rice, D. M.; Wittebort, R. J. and Griffin, R. G., Biochemistry, 24, 6220, 1982.

    Article  Google Scholar 

  37. Groth, P., Acta Chem. Scand., A30, 155, 1976.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moller, M., Kogler, G., Oelfin, D., Drotloff, H. (1991). Molecular Motion in Crystalline and Mesomorphous Phases of Large Size Cycloalkanes as a Model for Polyethylene. In: Mathias, L.J. (eds) Solid State NMR of Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2474-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2474-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2476-6

  • Online ISBN: 978-1-4899-2474-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics