Submicron Lithography

  • C. D. W. Wilkinson
  • S. P. Beaumont
Part of the NATO ASI Series book series (NSSB, volume 180)


Lithography plays a central role in the fabrication of electronic devices. The minimum feature size required in the device is important in the choice of lithographic method. Generally for linewidths above 1μm linewidth optical lithography is used whilst for smaller dimensions it is necessary to use electron, ion beam or X-ray lithography. The linewidths in current production VLSI circuits range between 1 and 3μm; there are programs in the U.S. and the U.K. to reduce the linewidth to 0.5μm over the next few years(1). Single conventional semiconducting electronic devices have been made with gates as small as 0.1μm and some experimental superconducting devices employ features with sizes in the 10–30nm range.


Electron Beam Secondary Electron Electron Beam Lithography Optical Lithography Thick Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Hains, The Government Role in VLSI Chap. 7 of VLSI Electronics Microstructure Science, Vol. 1, ed. N.G. Einspruch, Academic Press, N.Y., 1981.Google Scholar
  2. 2.
    S.P. Beaumont, P.G. Bower, T. Tamamura and C.D.W. Wilkinson, Sub 20nm Wide Metal Lines by Electron Beam Exposure of Thin PMMA Films and Liftoff,. Appl. Phys. Lett. 38, 436, 1981.ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Brewer, Electron Beam Technology in Microelectronic Fabrication, Academic Press, New York, 1980.Google Scholar
  4. 4.
    J. Kelly, T. Groves and H.P. Kuo, A High-Current High-Speed Electron Beam Lithography Column, J.Vac.Sci. Technol., 19, 936–940 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    R.D. Moore, G.A. Caccoma, H.C. Pfeiffer, E.V. Weber and O.C. Woodward, EL-3 A High Throughput High Resolution Lithography Tool, J. Vac. Sci. Technol., 19, 950–952 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    M. Fujinami, T. Matsuda, K. Takamoto, H. Yoda, T. Ishiga, N. Saitu and T. Komoda, Variably Shaped Electron Beam Lithography System EB-55, J.Vac. Sci. Technol., 19, 941–945, (1981).ADSCrossRefGoogle Scholar
  7. 7.
    H.G. Craighead, R.E. Howard, L.D. Jackel and P.M. Mankiewich, 10 nm Linewidth Electron Beam Lithography on GaAs, Appl. Phys. Letts., 42, 38–40 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    A.N. Broers, W.W. Molzen, J.J. Cuomo and N.D. Witteis, Electron Beam Fabrication of 80 Metal Structures, Appl. Phys. Lett., 29, 596–598 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    M. Isaacson and A. Murray, In-situ Vapourization of Very Low Molecular Weight Resists Using 1/2 nm Diameter Electron Beams, J. Vac. Sci. Technol., 19, 1117–20, (1981).ADSCrossRefGoogle Scholar
  10. 10.
    R.L. Seliger, J.W. Ward, V. Wang and R.S. Kubena, A High Intensity Scanning Ion Probe with Submicrometer Spot Size, Apply. Phys. Lett., 34, 310–312, (1979).ADSCrossRefGoogle Scholar
  11. 11.
    H.I. Smith, P.L. Spears and S.E. Bernacki, X-Ray Lithography: A Complementary Technique to Electron Beam Lithography, J. Vac. Sci. Tech., 10, 913–917, (1973).ADSCrossRefGoogle Scholar
  12. 12.
    S.E. Bernacki and H.I. Smith, Fabrication of Silicon MOS Devices Using X-Ray Lithography, IEEE Trans. El. Devices, ED-22, 421–428 (1975).CrossRefGoogle Scholar
  13. 13.
    D. Maydan, G.A. Coquin, J.R. Maldonado, S. Somekh, D.Y. Lou and G.N. Taylor, High Speed Replication of Submicron Features on Large Areas by X-Ray Lithography, IEEE Trans, El. Devices, ED-22, 429–433, (1975).CrossRefGoogle Scholar
  14. 14.
    W.D. Grobman, Synchrotron Radiation X-Ray Lithography, in Handbook on Synchrotron Radiation Vol. I, ed. E.E. Koch, D.E. Eastman and Y. Farge, North Holand (1980).Google Scholar
  15. 15.
    M. Sekimoto, H. Yoshira, T. Ohtaubo and Y. Saiton, Silicon Nitride Single-Layer X-Ray Maskm Jap J. Appl. Phys. 20, L667–672, (1981).CrossRefGoogle Scholar
  16. 16.
    D.C. Flanders and H.I. Smith, Polyimide Membrane X-Ray Lithography Masks-Fabrication and Distortion Measurements, J. Vac. Sci. Technol., 15, 995–997, (1978).ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Bowden, Electron Irradiation of Polymers and its Application to Resists for Electron Beam Lithography, CRC ritical Reviews, Solid State Sciences 8 223–264, (1979).MathSciNetGoogle Scholar
  18. 18.
    M. Hatzakis, Electron Resists for Microcircuit and Mask Production, J. Electrochem Soc. 116, 1033-37, (1969). Also: R.A. Harris, Polymethyl Methacrylate as an Electron Sensitive Resist, J. Electrochem. Soc. 120, 270-274, (1974).Google Scholar
  19. 19.
    W.J. Daughton and F.L. Givens, An Investigation of the Thickness Variation of Spun-on Thin Films, J. Electrochem. Soc. 129, 173-179, (1982).Google Scholar
  20. 20.
    J.M. Shaw and M. Hatzakis, Developer Temperature Effects on e-beam and Optically Exposed Positive Photoresist, J. Electrochem, Soc. 1266, 2026–2031, (1979).CrossRefGoogle Scholar
  21. 21.
    V.K. Sharma, R.A. Pethrick and S. Affrossman, Polymethyl methacrylate): Influence of Tacticity on its Use as an Electron Resist, Polymer 23, 1732–36, (1982).CrossRefGoogle Scholar
  22. 22.
    J. S. Greeneich, Developer Characteristics of Poly (methyl Methacrylate) Electron Resist, J. Electrochem. Soc. 122, 970-976, (1975).Google Scholar
  23. 23.
    K. Harada, O. Kogure and K. Murase, Poly(Phenylmethacrylate-co-Methacrylic Acid) as a Dry-Etching Durable Positive Electron Resist, IEEE Trans. on Elect. Dev., ED-29, 518-524 (1982).Google Scholar
  24. 24.
    M.E. Mochel, C.J. Humphreys, J.A. Eades, J.M. Mochel and A.M. Petford, Electron Beam Writing on a 20 Scale in Metal-Aluminas, Appl. Phys. Lett. 42, 392–394, (1983).ADSCrossRefGoogle Scholar
  25. 25.
    T. Tamamura, K. Sukegawa and S. Sugaward, Resolution Limit of Negative Electron Resist Exposed on a Thin Film Substrate, J. Electrochem. Soc. 129, 1831–35, (1982).CrossRefGoogle Scholar
  26. 26.
    B. Singh, S.P. Beaumont, P.G. Bower and C.D.W. Wilkinson, New Inorganic Electron Resist System for High Resolution Lithography, Appl. Phys. Lett. 41, 889–891, (1982).ADSCrossRefGoogle Scholar
  27. 27.
    J.M. Moran, High Resolution Resist Patterning Using Reactive Ion Etching Techniques, Solid State Technol. 24(4), 195–198, (1981).Google Scholar
  28. 28.
    M. Hatzakis, J. Paraszczak and J. Shaw, Double Layer Resist Systems for High Resolution Lithography, Proceedings of Microcircuit Engineering 81, Laussane, Switzerland, p.386-396.Google Scholar
  29. 29.
    S.P. Beaumont, T. Tamamura and C.D.W. Wilkinson, A Two-Layer Resist System for Efficient Lift-Off in Very High Resolution Electron Beam Lithography, Proc. Microcircuit Engineering, 381-388, Amsterdam, Delft University Press, (1981).Google Scholar
  30. 30.
    C.E. Binnie, S.P. Beaumont, C.D.W. Wilkinson and J.C. White, The Fabrication of Very Short Gate Length n-Channel Mosfet’s by Direction Electron Beam Exposure, Proc. Microcircuit Engineering 82, Grenoble, France, (1982).Google Scholar
  31. 31.
    L.D. Jackel, R.E. Howard, E.L. Hu, D.M. Tennant and P. Grabbe, 50nm Silicon Structures Fabricated with Tri-level Electron Beam Resist and Reactive-Ion Etching, Appl. Phys. Lett. 39, 268–270, (1981).ADSCrossRefGoogle Scholar
  32. 32.
    T.H.P. Chang, J.Vac.Sci. Technol. 12, 1271, (1975).ADSCrossRefGoogle Scholar
  33. 33.
    A. Broers, Resolution Limits of PMMA resist for Exposure with 50kV Electrons, J. Electrochem, Soc. 128, 166–1970, (1981).CrossRefGoogle Scholar
  34. 34.
    S.A. Rishton, S.P. Beaumont and C.D.W. Wilkinson, Measurement of the Effect of Secondary Electrons on the Resolution Limit of PMMA, Proc. Microcircuit Engineering 82, Grenoble, (1982).Google Scholar
  35. 35.
    S.P. Beaumont, B. Singh and C.D.W. Wilkinson, Very high Resolution Electron Beam Lithography-thin films on solid substrates? Proc. 10th Electron and Ion Beam Sci. Technol. Conf., Montreal, Canada, (1982).Google Scholar
  36. 36.
    W.S. Mackie, S.P. Beaumont, C.D.W. Wilkinson and J.S. Roberts, High Resolution Lithography on Thin Active Semiconductor Membranes, Proc.10th Electron and Ion Beam Sci. Technol. Conf. Montreal, Canada (1982).Google Scholar
  37. 37.
    M.P. Lepselter and W.T. Lynch, Resolution Limitations for Sub-micron Technology in VSLI Electronics, ed. N.G. Einspruch, Academic Press, N.Y., 1981.Google Scholar
  38. 38.
    D.C. Flander, Replication of 175 Å Lines and Spaces in Polymethyl-methcrylate Using X-Ray Lithography, Appl. Phys. Lett. 36, 93–96, (1980).ADSCrossRefGoogle Scholar
  39. 39.
    S.P. Beaumont, P.G. Bower, T. Tamamura and C.C.W. Wilkinson, Replication of Very High Resolution e-beam Written Masks by Carbon k X-ray Contact Printing, Proc. Microcircuit Eng. 81, Lausanne, (1981).Google Scholar
  40. 40.
    R. Feder, E. Spiller and J. Topalian, Replication of 0.1 Micron Geometries with X-ray Lithography, J. Vac. Sci. Tech. 12, 1332–35 (1975).ADSCrossRefGoogle Scholar
  41. 41.
    B. Singh, S.P. Beaumont, A.Webb, P.A. Bower and C.D.W. Wilkinson High Resolution Patterning with Ag2S/As2S3 inorganic Electron Beam Resist and Reactive ion etching Proc. 11th Electron, Ion Photon Beam Sci. and Technology Conference, Los Angeles (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • C. D. W. Wilkinson
    • 1
  • S. P. Beaumont
    • 1
  1. 1.Department of Electronics and Electrical EngineeringThe University of GlasgowGlasgowUK

Personalised recommendations