Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 180))

Abstract

Lithography plays a central role in the fabrication of electronic devices. The minimum feature size required in the device is important in the choice of lithographic method. Generally for linewidths above 1μm linewidth optical lithography is used whilst for smaller dimensions it is necessary to use electron, ion beam or X-ray lithography. The linewidths in current production VLSI circuits range between 1 and 3μm; there are programs in the U.S. and the U.K. to reduce the linewidth to 0.5μm over the next few years(1). Single conventional semiconducting electronic devices have been made with gates as small as 0.1μm and some experimental superconducting devices employ features with sizes in the 10–30nm range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Hains, The Government Role in VLSI Chap. 7 of VLSI Electronics Microstructure Science, Vol. 1, ed. N.G. Einspruch, Academic Press, N.Y., 1981.

    Google Scholar 

  2. S.P. Beaumont, P.G. Bower, T. Tamamura and C.D.W. Wilkinson, Sub 20nm Wide Metal Lines by Electron Beam Exposure of Thin PMMA Films and Liftoff,. Appl. Phys. Lett. 38, 436, 1981.

    Article  ADS  Google Scholar 

  3. G.R. Brewer, Electron Beam Technology in Microelectronic Fabrication, Academic Press, New York, 1980.

    Google Scholar 

  4. J. Kelly, T. Groves and H.P. Kuo, A High-Current High-Speed Electron Beam Lithography Column, J.Vac.Sci. Technol., 19, 936–940 (1981)

    Article  ADS  Google Scholar 

  5. R.D. Moore, G.A. Caccoma, H.C. Pfeiffer, E.V. Weber and O.C. Woodward, EL-3 A High Throughput High Resolution Lithography Tool, J. Vac. Sci. Technol., 19, 950–952 (1981).

    Article  ADS  Google Scholar 

  6. M. Fujinami, T. Matsuda, K. Takamoto, H. Yoda, T. Ishiga, N. Saitu and T. Komoda, Variably Shaped Electron Beam Lithography System EB-55, J.Vac. Sci. Technol., 19, 941–945, (1981).

    Article  ADS  Google Scholar 

  7. H.G. Craighead, R.E. Howard, L.D. Jackel and P.M. Mankiewich, 10 nm Linewidth Electron Beam Lithography on GaAs, Appl. Phys. Letts., 42, 38–40 (1983).

    Article  ADS  Google Scholar 

  8. A.N. Broers, W.W. Molzen, J.J. Cuomo and N.D. Witteis, Electron Beam Fabrication of 80 Metal Structures, Appl. Phys. Lett., 29, 596–598 (1976).

    Article  ADS  Google Scholar 

  9. M. Isaacson and A. Murray, In-situ Vapourization of Very Low Molecular Weight Resists Using 1/2 nm Diameter Electron Beams, J. Vac. Sci. Technol., 19, 1117–20, (1981).

    Article  ADS  Google Scholar 

  10. R.L. Seliger, J.W. Ward, V. Wang and R.S. Kubena, A High Intensity Scanning Ion Probe with Submicrometer Spot Size, Apply. Phys. Lett., 34, 310–312, (1979).

    Article  ADS  Google Scholar 

  11. H.I. Smith, P.L. Spears and S.E. Bernacki, X-Ray Lithography: A Complementary Technique to Electron Beam Lithography, J. Vac. Sci. Tech., 10, 913–917, (1973).

    Article  ADS  Google Scholar 

  12. S.E. Bernacki and H.I. Smith, Fabrication of Silicon MOS Devices Using X-Ray Lithography, IEEE Trans. El. Devices, ED-22, 421–428 (1975).

    Article  Google Scholar 

  13. D. Maydan, G.A. Coquin, J.R. Maldonado, S. Somekh, D.Y. Lou and G.N. Taylor, High Speed Replication of Submicron Features on Large Areas by X-Ray Lithography, IEEE Trans, El. Devices, ED-22, 429–433, (1975).

    Article  Google Scholar 

  14. W.D. Grobman, Synchrotron Radiation X-Ray Lithography, in Handbook on Synchrotron Radiation Vol. I, ed. E.E. Koch, D.E. Eastman and Y. Farge, North Holand (1980).

    Google Scholar 

  15. M. Sekimoto, H. Yoshira, T. Ohtaubo and Y. Saiton, Silicon Nitride Single-Layer X-Ray Maskm Jap J. Appl. Phys. 20, L667–672, (1981).

    Article  Google Scholar 

  16. D.C. Flanders and H.I. Smith, Polyimide Membrane X-Ray Lithography Masks-Fabrication and Distortion Measurements, J. Vac. Sci. Technol., 15, 995–997, (1978).

    Article  ADS  Google Scholar 

  17. M.J. Bowden, Electron Irradiation of Polymers and its Application to Resists for Electron Beam Lithography, CRC ritical Reviews, Solid State Sciences 8 223–264, (1979).

    MathSciNet  Google Scholar 

  18. M. Hatzakis, Electron Resists for Microcircuit and Mask Production, J. Electrochem Soc. 116, 1033-37, (1969). Also: R.A. Harris, Polymethyl Methacrylate as an Electron Sensitive Resist, J. Electrochem. Soc. 120, 270-274, (1974).

    Google Scholar 

  19. W.J. Daughton and F.L. Givens, An Investigation of the Thickness Variation of Spun-on Thin Films, J. Electrochem. Soc. 129, 173-179, (1982).

    Google Scholar 

  20. J.M. Shaw and M. Hatzakis, Developer Temperature Effects on e-beam and Optically Exposed Positive Photoresist, J. Electrochem, Soc. 1266, 2026–2031, (1979).

    Article  Google Scholar 

  21. V.K. Sharma, R.A. Pethrick and S. Affrossman, Polymethyl methacrylate): Influence of Tacticity on its Use as an Electron Resist, Polymer 23, 1732–36, (1982).

    Article  Google Scholar 

  22. J. S. Greeneich, Developer Characteristics of Poly (methyl Methacrylate) Electron Resist, J. Electrochem. Soc. 122, 970-976, (1975).

    Google Scholar 

  23. K. Harada, O. Kogure and K. Murase, Poly(Phenylmethacrylate-co-Methacrylic Acid) as a Dry-Etching Durable Positive Electron Resist, IEEE Trans. on Elect. Dev., ED-29, 518-524 (1982).

    Google Scholar 

  24. M.E. Mochel, C.J. Humphreys, J.A. Eades, J.M. Mochel and A.M. Petford, Electron Beam Writing on a 20 Scale in Metal-Aluminas, Appl. Phys. Lett. 42, 392–394, (1983).

    Article  ADS  Google Scholar 

  25. T. Tamamura, K. Sukegawa and S. Sugaward, Resolution Limit of Negative Electron Resist Exposed on a Thin Film Substrate, J. Electrochem. Soc. 129, 1831–35, (1982).

    Article  Google Scholar 

  26. B. Singh, S.P. Beaumont, P.G. Bower and C.D.W. Wilkinson, New Inorganic Electron Resist System for High Resolution Lithography, Appl. Phys. Lett. 41, 889–891, (1982).

    Article  ADS  Google Scholar 

  27. J.M. Moran, High Resolution Resist Patterning Using Reactive Ion Etching Techniques, Solid State Technol. 24(4), 195–198, (1981).

    Google Scholar 

  28. M. Hatzakis, J. Paraszczak and J. Shaw, Double Layer Resist Systems for High Resolution Lithography, Proceedings of Microcircuit Engineering 81, Laussane, Switzerland, p.386-396.

    Google Scholar 

  29. S.P. Beaumont, T. Tamamura and C.D.W. Wilkinson, A Two-Layer Resist System for Efficient Lift-Off in Very High Resolution Electron Beam Lithography, Proc. Microcircuit Engineering, 381-388, Amsterdam, Delft University Press, (1981).

    Google Scholar 

  30. C.E. Binnie, S.P. Beaumont, C.D.W. Wilkinson and J.C. White, The Fabrication of Very Short Gate Length n-Channel Mosfet’s by Direction Electron Beam Exposure, Proc. Microcircuit Engineering 82, Grenoble, France, (1982).

    Google Scholar 

  31. L.D. Jackel, R.E. Howard, E.L. Hu, D.M. Tennant and P. Grabbe, 50nm Silicon Structures Fabricated with Tri-level Electron Beam Resist and Reactive-Ion Etching, Appl. Phys. Lett. 39, 268–270, (1981).

    Article  ADS  Google Scholar 

  32. T.H.P. Chang, J.Vac.Sci. Technol. 12, 1271, (1975).

    Article  ADS  Google Scholar 

  33. A. Broers, Resolution Limits of PMMA resist for Exposure with 50kV Electrons, J. Electrochem, Soc. 128, 166–1970, (1981).

    Article  Google Scholar 

  34. S.A. Rishton, S.P. Beaumont and C.D.W. Wilkinson, Measurement of the Effect of Secondary Electrons on the Resolution Limit of PMMA, Proc. Microcircuit Engineering 82, Grenoble, (1982).

    Google Scholar 

  35. S.P. Beaumont, B. Singh and C.D.W. Wilkinson, Very high Resolution Electron Beam Lithography-thin films on solid substrates? Proc. 10th Electron and Ion Beam Sci. Technol. Conf., Montreal, Canada, (1982).

    Google Scholar 

  36. W.S. Mackie, S.P. Beaumont, C.D.W. Wilkinson and J.S. Roberts, High Resolution Lithography on Thin Active Semiconductor Membranes, Proc.10th Electron and Ion Beam Sci. Technol. Conf. Montreal, Canada (1982).

    Google Scholar 

  37. M.P. Lepselter and W.T. Lynch, Resolution Limitations for Sub-micron Technology in VSLI Electronics, ed. N.G. Einspruch, Academic Press, N.Y., 1981.

    Google Scholar 

  38. D.C. Flander, Replication of 175 Å Lines and Spaces in Polymethyl-methcrylate Using X-Ray Lithography, Appl. Phys. Lett. 36, 93–96, (1980).

    Article  ADS  Google Scholar 

  39. S.P. Beaumont, P.G. Bower, T. Tamamura and C.C.W. Wilkinson, Replication of Very High Resolution e-beam Written Masks by Carbon k X-ray Contact Printing, Proc. Microcircuit Eng. 81, Lausanne, (1981).

    Google Scholar 

  40. R. Feder, E. Spiller and J. Topalian, Replication of 0.1 Micron Geometries with X-ray Lithography, J. Vac. Sci. Tech. 12, 1332–35 (1975).

    Article  ADS  Google Scholar 

  41. B. Singh, S.P. Beaumont, A.Webb, P.A. Bower and C.D.W. Wilkinson High Resolution Patterning with Ag2S/As2S3 inorganic Electron Beam Resist and Reactive ion etching Proc. 11th Electron, Ion Photon Beam Sci. and Technology Conference, Los Angeles (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkinson, C.D.W., Beaumont, S.P. (1988). Submicron Lithography. In: Grubin, H.L., Ferry, D.K., Jacoboni, C. (eds) The Physics of Submicron Semiconductor Devices. NATO ASI Series, vol 180. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2382-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2382-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2384-4

  • Online ISBN: 978-1-4899-2382-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics