Skip to main content

Homogeneous and Heterogeneous Enzyme Immunoassays Monitored with Carbon Dioxide Sensing Membrane Electrodes

  • Chapter
Electrochemical Sensors in Immunological Analysis

Abstract

Immunochemical Potentiometric and amperometric electrodes are in the infant stages of development, yet the literature is already replete with diversified efforts to design increasingly sensitive and specific immunoelectrodes (Eggers et al., 1982; Guilbault, 1983; Boitieux et al., 1984; Keating and Rechnitz, 1984). The carbon dioxide gas-sensing probe, however, has played only a limited role in this research. Despite all the schemes designed for immunosensors, there is a conspicuous absence in the use of the carbon dioxide probe. Why this might be so is suggested by the constraints within which use of the carbon dioxide probe is practical as well as the limiting characteristics of the immunochemical reaction being studied. Additional restrictions result from the presence of the enzyme when developing an enzyme immunoassay [EIA]. Despite this, the enzyme is a favorite “transducer”, or label, which produces a signal related to the immunochemical reaction and can be recognized by the electrochemical detector. This integration of enzyme chemistry, immunochemistry and probe characteristics is a critical factor in determining, during method development, the feasibility of selecting a carbon dioxide probe as the analytical detector. These key ingredients will be discussed in this overview together with possibilities for the future of the carbon dioxide sensor in immunochemical applications. Improvements in the probe and broader applications will highlight this future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizawa, M., Morioka, A. and Susuki, S., 1980, An enzyme immunosensor for the electrochemical determination of the tumor antigen α-feto-protein, Anal. Chim. Acta 115: 61–67.

    Article  CAS  Google Scholar 

  • Alexander, P. W. and Maltra, C., 1982, Enzyme-linked immunoassay of human immunoglobulin G with the fluoride ion selective electrode, Anal. Chem. 54: 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Analytical Chemistry Fundamental Reviews (see, e. g., April 1984, April 1982).

    Google Scholar 

  • Barman, T. E., 1969, “Enzyme Handbook,” Springer-Verlag, New York.

    Google Scholar 

  • Blake, C. and Gould, B. J., 1984, Use of enzymes in immunoassay techniques. A review, Analyst 109: 533–547.

    Article  CAS  Google Scholar 

  • Boitieux, J. L., Thomas D. and Desmet, G., 1984, Oxygen electrode-based enzyme immunoassay for the amperometric determination of hepatitis B-surface antigen, Anal. Chim. Acta 163: 309–313.

    Article  CAS  Google Scholar 

  • Boitieux, J. L., Desmet, G. and Thomas, D., 1979, An “antibody electrode,” preliminary report on a new approach in enzyme immunoassay, Clin. Chem. 25: 318–321.

    PubMed  CAS  Google Scholar 

  • Brontman, S. B. and Meyerhoff, M. E., 1984, Homogeneous enzyme-linked assays mediated by enzyme antibodies; a new approach to electrodebased immunoassays, Anal. Chim. Acta 162: 363–367.

    Article  CAS  Google Scholar 

  • Broyles, C. A. and Rechnitz, G. A., 1986, Drug antibody measurement by homogeneous enzyme immunoassay with amperometric detection, Anal. Chem., in press.

    Google Scholar 

  • Broyles, C. A., 1985, unpublished results.

    Google Scholar 

  • Cais, M., 1983, Metalloimmunoassay: principles and practice, Meth. Enzymol. 92: 445–458.

    Article  PubMed  CAS  Google Scholar 

  • Covington, A. K., ed., 1979, “Ion-Selective Electrode Methodology,” CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Dandliker, W. B., Alonso, R., deSaussure, V. A., Kierszenbaum, F., Levison, S. A. and Schapiro, H. C., 1967, The effect of chaotropic ions on the dissociation of antigen-antibody complexes, Biochem. 6: 1460–1467.

    Article  CAS  Google Scholar 

  • D’Orazio, P. and Rechnitz, G. A., 1979, Potentiometric electrode measurement of serum antibodies based on the complement fixation text, Anal. Chim. Acta 109: 25–31.

    Article  Google Scholar 

  • Doyle, M. J., Halsall, H. B. and Heineman, W. R., 1982, Heterogeneous immunoassay for serum proteins by differential pulse anodic stripping voltammetry, Anal. Chem. 54: 2318–2322.

    Article  PubMed  CAS  Google Scholar 

  • Eggers, H. M., Halsall, H. B. and Heineman, W. R., 1982, Enzyme immunoassay with flow-amperometric detection of NADH, Clin. Chem. 28: 1848–1851.

    PubMed  CAS  Google Scholar 

  • Fonong, T. and Rechnitz, G. A., 1984, Homogeneous Potentiometric enzyme immunoassay for human immunoglobulin G, Anal. Chem. 56: 2586–2590.

    Article  PubMed  CAS  Google Scholar 

  • Freiser, H., ed., 1978, 1980, “Ion Selective Electrodes in Analytical Chemistry,” Vol. I, Vol. II, Plenum Press, New York.

    Google Scholar 

  • Gebauer, C. R. and Rechnitz, G. A., 1981, Immunoassay Studies using adenosine deaminase enzyme with Potentiometric rate measurement, Anal. Lett, 14: 97–109.

    Article  CAS  Google Scholar 

  • Gershoni, J. M. and Palade, G. E., 1983, Protein blotting: principles and applications, Anal. Bioch. 131: 1–15.

    Article  CAS  Google Scholar 

  • Goding, J. W., 1983, “Monoclonal Antibodies: Principles and Practice,” Academic Press, New York.

    Google Scholar 

  • Grabstein, K., 1980, Cell-mediated cytolytic responses, in: “Selected Methods in Cellular Immunology,” Mishell, B. B. and Shiigi, S. M., eds., W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Guilbault, G. G., Czarnecki, J. P. and Nabi Rahni, M. A., 1985, Performance improvements of gas-diffusion ion-selective and enzyme electrodes, Anal. Chem. 57: 2110–2116.

    Article  CAS  Google Scholar 

  • Guilbault, G. G., 1983, Immobilised biological and immuno sensors, Anal. Proc. 20: 550–552.

    Article  CAS  Google Scholar 

  • Guilbault, G. G. and Shu, F. R., 1972, Enzyme electrodes based on the use of a carbon dioxide sensor. Urea and L-tyrosine electrodes, Anal. Chem. 44: 2161–2166.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, C. J., Neuberger, C. and Taylor, M., 1981, Applicability and cost effectiveness of ion chromatographic and ion-selective electrode techniques as applied to environmental monitoring by the health and safety executive, Anal. Proc. 18: 201–204.

    Article  CAS  Google Scholar 

  • Janata, J., 1975, An immunoelectrode, J. Amer. Chem. Soc. 97: 2914–2916.

    Article  CAS  Google Scholar 

  • Keating, M. Y. and Rechnitz, G. A., 1985, Potentiometric enzyme immunoassay for digoxin using polystyrene beads, Anal. Lett. 18: 1–10.

    Article  CAS  Google Scholar 

  • Keating, M. Y. and Rechnitz, G. A., 1984, Potentiometric digoxin antibody measurements with antigen-ionophore based membrane electrodes, Anal. Chem. 56: 801–806.

    Article  PubMed  CAS  Google Scholar 

  • Keeley, D. F. and Walters, F. H., 1983, Use of a conditioning buffer to regenerate gas sensing ion selective electrodes, Anal. Lett. 16: 1581–1584.

    Article  CAS  Google Scholar 

  • Kost, G. J., Chow, J. L. and Kenny, M. A., 1983, Transcutaneous carbon dioxide for short-term monitoring of neonates, Clin. Chem. 29: 1534–1536.

    PubMed  CAS  Google Scholar 

  • Mascini, M., Zolesi, F. and Palleschi, G., 1982, pH electrode-based enzyme immunoassay for the determination of human chorionic gonadotropin, Anal. Lett. 15: 101–113.

    Article  CAS  Google Scholar 

  • Midgley, E., 1975, Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters, Analyst 100: 386–399.

    Article  CAS  Google Scholar 

  • Monroe, D., 1984, Enzyme immunoassay, Anal. Chem. 56: 920A–931A.

    CAS  Google Scholar 

  • Ngo, T. T. and Lenhoff, H. M., 1983, Antibody-induced conformational restriction as basis for new separation-free enzyme immunoassay, Bioch. Biophys. Res. Comm. 114: 1097–1103.

    Article  CAS  Google Scholar 

  • North, J. R., 1985, Immunosensors: antibody-based biosensors, Trends Biotech. 3: 180–186.

    Article  CAS  Google Scholar 

  • Orion Research Instruction Manual; Carbon dioxide electrode model 95-02.

    Google Scholar 

  • Pinkerton, T. C. and Lawson, B. L., 1982, Analytical problems facing the development of electrochemical transducers for in vivo drug monitoring, Clin. Chem. 28: 1946–1955.

    PubMed  CAS  Google Scholar 

  • Pui, C. P., Rechnitz, G. A. and Miller, R. F., 1978, Micro-size Potentiometric probes for gas and substrate sensing, Anal. Chem. 50: 330–333.

    Article  CAS  Google Scholar 

  • Ross. J., W., Riseman, J. H. and Kruegar, J. A., 1973, Potentiometric gas sensing electrodes, Pure Appl, Chem. 36: 473–487.

    CAS  Google Scholar 

  • Schlager, S. I. and Adams, A. C., 1983, Use of dyes and radioisotopic markers in cytotoxicity tests, Meth. Enzymol. 93: 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Seegopaul, P. and Rechnitz, G. A., 1983, Enzymatic determination of thiamine pyrophosphate with a pCO2 membrane electrode, Anal. Chem. 55: 1929–1933.

    Article  CAS  Google Scholar 

  • Seiyama, T., Fueki, K., Shiokawa, J. and Suzuki, S., 1983, “Chemical Sensors,” Elsevier, New York.

    Google Scholar 

  • Severinghaus, J. W. and Bradley, A. F., 1958, Electrodes for blood pO2 and pCO2 determination, J. Appl. Physiol. 13: 515–520.

    PubMed  CAS  Google Scholar 

  • Shiba, K., Umezawa, Y., Watanabe, T., Ogawa, S. and Fujiwara, S., 1982, Thin-layer Potentiometric analysis of lipid antigen-antibody reaction by tetrapentylammonium (TPA+) ion loaded liposomes and TPA ion selective electrode, Anal. Chem. 52: 1610–1613.

    Article  Google Scholar 

  • Silman, I. H. and Katchalski, E., 1966, Water insoluble derivatives of enzymes, antigens, and antibodies, Ann. Rev. Biochem. 35: 873–908.

    Article  PubMed  CAS  Google Scholar 

  • Sittampalam, G. S. and Wilson, G. S., 1984, Enzyme immunoassays with electrochemical detection, Trends Anal. Chem. 3: 96–99.

    Article  CAS  Google Scholar 

  • Sohtell, M. and Karlmark, B., 1976, In vivo micropuncture PCO2 measurements, Pflugers Arch. 363: 179–180.

    Article  PubMed  CAS  Google Scholar 

  • Stow, R. W., Baer, R. F. and Randall, B. F., 1957, Rapid measurement of the tension of carbon dioxide in blood, Arch. Phys. Med. Rehab. 28: 646–650.

    Google Scholar 

  • Takano, S., Kondoh, Y. and Ohtsuka, H., 1985, Determination of carbonates in detergents by a carbon dioxide gas selective electrode, Anal. Chem. 52: 1523–1526.

    Article  Google Scholar 

  • Ternynck, T. and Avrameas, S., 1971, Effect of electrolytes and of distilled water on antigen-antibody complexes, Biochem. J. 125: 297–302.

    PubMed  CAS  Google Scholar 

  • Uditha de Alwis, W. and Wilson, G. S., 1985, Rapid sub-picomole electrochemical enzyme immunoassay for immunoglobulin G, Anal. Chem. 57: 2754–2756.

    Article  CAS  Google Scholar 

  • Weetall, H. H., ed., 1975, “Immobilized Enzymes, Antigens, Antibodies and Peptides. Preparation and Characterization,” Marcel Dekker, Inc. New York.

    Google Scholar 

  • Wehmeyer, K., Doyle, M. J., Halsall, H. B. and Heineman, W. R., 1983, Immunoassay by electrochemical techniques, Meth. Enzymol. 92: 432–444.

    Article  PubMed  CAS  Google Scholar 

  • Wimberley, P. D., Pedersen, K. G., Thode, J., Fogh-Andersen, N., Sorensen, A. M. and Siggar-Anderson, C., 1983, Transcutaneous and capillary PCO2and PO2 measurements in healthy adults, Clin. Chem. 29: 1471–1473.

    PubMed  CAS  Google Scholar 

  • Yamamoto, N., Nagasawa, Y., Shuto, S., Tsubomuro, H., Sawai, M. and Okumura, H., 1980, Antigen-antibody reaction investigated with use of a chemically modified electrode, Clin. Chem. 26: 1569–1572.

    PubMed  CAS  Google Scholar 

  • Zaborsky, O. R., 1973, “Immobilized Enzymes,” CRC Press, Cleveland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Broyles, C.A., Rechnitz, G.A. (1987). Homogeneous and Heterogeneous Enzyme Immunoassays Monitored with Carbon Dioxide Sensing Membrane Electrodes. In: Ngo, T.T. (eds) Electrochemical Sensors in Immunological Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1974-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1974-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1976-2

  • Online ISBN: 978-1-4899-1974-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics