Skip to main content

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

Abstract

Laser is an electromagnetic radiation, which is a form of energy and does not require any medium to travel through space. The properties of electromagnetic radiation can be characterized by its wave-like or particle-like (corpuscular) behavior. The waves of electromagnetic radiation are characterized by wavelength or frequency. The wave theory of electromagnetic radiation explains various observed phenomena, such as the diffraction, interference, and polarization of light [Calvert and Pitts (1966)]. If an opaque object is placed between a point source and a screen, alternate bands of light are formed within the geometrical shadow of the object, which is known as diffraction. This phenomenon can be explained by using Huygen’s principle, which states that each point on a wave front of light acts as a point source and emits a secondary wavelet in all directions. According to the wave theory, unpolarized light, which we encounter most commonly, consists of a large number of waves with the electric and magnetic vectors of each wave oscillating in fixed planes perpendicular to the direction of the radiation propagation, but the orientations of the planes of the various waves are random with respect to one another. In plane polarized light, which can also consist of many waves, the electric vectors of all the waves lie in a single plane and the magnetic vectors of all the waves lie in another plane perpendicular to the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A. W. (1982), Physical Chemistry of Surfaces, 4th Ed., Wiley, New York.

    Google Scholar 

  • Adrain, R. S. (1984), Some Industrial Uses of Laser-Induced Plasmas, Industrial Applications of Lasers, Koebner, H., ed., Wiley, New York, pp. 135–176.

    Google Scholar 

  • Allen, M. G. (1987), Digital Imaging Techniques for Single and Multi-phase Reacting Flow-Fields, HTGL Report T-259, Stanford University, April 1987.

    Google Scholar 

  • Allen, S. D., and Bass, M. (1979), J. Vac. Sci Technol. 16, 431.

    Article  Google Scholar 

  • Andrews, D. L. (1986), Lasers in Chemistry, Springer-Verlag, New York, pp. 118–127.

    Book  Google Scholar 

  • Antypas, G., and Moon, R. (1973), Growth and Characterization of InP-InGaAsP Lattice Matched Heterojunctions, J. Electrochem. Soc. 120, 1574.

    Article  Google Scholar 

  • Arnold, D. R., Baird, N. C., Bolton, J. R., Brand, J. C. D., Jacobs, P. W. M., de Mayo, P., and Ware, W. R. (1974), Photochemistry-An Introduction, Academic, New York, pp. 95–104.

    Google Scholar 

  • Bamford, C. H., and Tipper, C. F. H., eds. (1972), Comprehensive Chemical Kinetics, Vol 4, Decomposition of inorganic and Organometallic Compounds, Elsevier, New York.

    Google Scholar 

  • Barrow, G. M. (1962), Introduction to Molecular Spectroscopy, McGraw-Hill, New York, p. 81.

    Google Scholar 

  • Bäuerle, D. (1986), Chemical Processing with Lasers, Springer-Verlag, New York, pp. 22–35.

    Book  Google Scholar 

  • Bauman, R. P. (1962). Absorption Spectroscopy, Wiley, New York, pp. 270–274.

    Google Scholar 

  • Bixon, M., and Jortner, J. (1969), J. Chem. Phys. 50, 3284.

    Article  Google Scholar 

  • Bodenstein, M., and Lutkemeyer, H. (1924), Z. Phys. Chem. 114, 208.

    Google Scholar 

  • Bogatov, A., Dolginov, L., Druzhinina, L., Eliseev, P., Sverdlov, B., and Shevchenko, E. (1975), Heterojunction Lasers Made of GalnAsP and AlGaSbAs Solid Solutions, Sov. J. Quantum Electron. 4, 1281.

    Article  Google Scholar 

  • Breckenridge, W. H., and Stewart, G. M. (1986), Pulsed Laser Photolysis of Chromium Hexacarbonyl in the Gas Phase, J. Am. Chem. Soc. 108, 364.

    Article  Google Scholar 

  • Bunsen, R. W., and Roscoe, H. E. (1859), Pogg. Ann. 101, 193.

    Google Scholar 

  • Byron, Jr., F. W., and Foley, H. M. (1964), Phys. Rev. A 134, 625.

    Article  Google Scholar 

  • Callear, A. B., and Smith, I. W. M. (1963), Trans. Faraday Soc. 59, 1720.

    Article  Google Scholar 

  • Calvert, J. G., and Pitts, Jr., J. N. (1966), Photochemistry, Wiley., New York, pp. 1–26.

    Google Scholar 

  • Compton, A. H. (1923a), Phys. Rev. 21, 715.

    Google Scholar 

  • Compton, A. H. (1923b), Phys. Rev. 22, 409.

    Article  Google Scholar 

  • Condon, E. U. (1928), Phys. Rev. 32, 858.

    Article  MATH  Google Scholar 

  • Constable, F. H. (1925), Proc. Roy. Soc. Lond. A108, 355.

    Google Scholar 

  • Crosley, D. R. (1982), J. Chem. Ed. 59, 447.

    Article  Google Scholar 

  • Daily, J. W. (1977), Use of Rate Equations to Describe Laser Excitation in Flames, Appl. Opt. 16, 2322.

    Article  Google Scholar 

  • Dalton, J. G, and Turro, N. J. (1970), Kinetic Analyses of Photochemical Reactions Which Involve Quenching of More Than One Excited State: Quenching of Both Singlet and Triplet States Molecular Photochemistry, Mole. Photochem. 2, 133.

    Google Scholar 

  • Dash, J. C. (1975), Films on Solid Surfaces, Academic, New York.

    Google Scholar 

  • Davis, D. D., and Okabe, H. (1968), Determination of Bond Dissociation Energies in Hydrogen Cyanide, Cyanogen and Cyanogen Halides by the Photodissociation Method, J. Chem. Phys. 49, 5526.

    Article  Google Scholar 

  • DeGraff, B. A., and Calvert, J. G. (1967), J. Am. Chem. Soc. 89, 2247.

    Article  Google Scholar 

  • Demtroder, W. (1982), Laser Spectroscopy, Springer-Verlag, New York.

    Google Scholar 

  • Deutsch, T. F., Ehrlich, D. J, and Osgood, Jr., R. M. (1979), Appl. Phys. Lett. 35, 175.

    Article  Google Scholar 

  • Ditchburn, R. W. (1957), Light, Interscience, New York, p. 82.

    Google Scholar 

  • Donnelly, V. M., and Karlicek, R. F. (1982), J. Appl. Phys. 53, 6399.

    Article  Google Scholar 

  • Draper, J. W. (1841), Philos. Mag. 19, 195.

    Google Scholar 

  • Eastham, D. A. (1989), Atomic Physics of Lasers, Taylor and Francis, Philadelphia, pp. 75–82, and 34-35.

    Google Scholar 

  • Eckbreth, A. C. (1988), Laser Diagnostics for Combustion Temperature and Species, Abacus, Massachusetts.

    Google Scholar 

  • Eden, J. G. (1992), Photochemical Vapor Deposition, Wiley, New York.

    Google Scholar 

  • Ehrlich, D. J., Osgood, Jr., R. M., and Deutsch, T. F. (1980a), Appl. Phys. Lett. 36, 698.

    Article  Google Scholar 

  • Ehrlich, D. J., Osgood, Jr., R. M., and Deutsch, T. F. (1980b), IEEE J. Quantum Elect. QE-16, 1233.

    Article  Google Scholar 

  • Ehrlich, D. J., Osgood, Jr., R. M., and Deutsch, T. F. (1981), Appl. Phys. Lett. 38, 946.

    Article  Google Scholar 

  • Ehrlich, D. J., Osgood, Jr., R. M, and Deutsch, T. F. (1982), J. Vac. Sci. Technol. 21, 23.

    Article  Google Scholar 

  • Ehrlich, D. J., and Tsao. J. Y. (1983), A Review of Laser-Microchemical Processing, J. Vac. Sci. Technol. B1, 969.

    Google Scholar 

  • Einstein, A. (1905a), Ann. Phys. 17, 549.

    Article  MATH  Google Scholar 

  • Einstein, A. (1905b), Ann. Physik 17, 132.

    Article  MATH  Google Scholar 

  • Einstein, A. (1906), Ann. Phys. 19, 371.

    Article  MATH  Google Scholar 

  • Einstein, A. (1912a), Ann. Phys. 37, 832.

    Article  MATH  Google Scholar 

  • Einstein, A. (1912b), Ann. Phys. 38, 881.

    Article  MATH  Google Scholar 

  • Einstein, A. (1913), J. Phys. 3, 227.

    Google Scholar 

  • Einstein, A. (1916), Strahlungs-emission und-absorption nach der quantertheorie, Verh. Dtsch. Phys. Ges. 18, 318.

    Google Scholar 

  • Faraday, M. (1834), Philos. Trans. 124, 55.

    Article  Google Scholar 

  • Foley, H. M. (1946), Phys. Rev. 69, 616.

    Article  Google Scholar 

  • Franck, J. (1925), Trans. Faraday Soc. 21, 536.

    Article  Google Scholar 

  • Furssow, W., and Wlassow, A. (1936), Physik. Z. Sowjetunion 10, 378.

    MATH  Google Scholar 

  • Griem, H. R. (1964), Plasma Spectroscopy, McGraw-Hill, New York.

    Google Scholar 

  • Griem, H. R. (1974), Spectral Line Broadening by Plasmas, Academic, New York.

    Google Scholar 

  • Griffin, P. M., and Hutcherson, J. W. (1969), Oscillator Strengths of the Resonance Lines of Krypton and Xenon, J. Opt. Soc. Am. 59, 1607.

    Article  Google Scholar 

  • Hayward, D. O., and Trapnell, B. M. W. (1964), Chemisorption, Butterworths, London.

    Google Scholar 

  • Hertz, H. (1887), Ann. Physik 31, 983.

    Article  Google Scholar 

  • Herzberg, G. (1945), Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York.

    Google Scholar 

  • Herzberg, G. (1950), Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules, 2nd Ed., Van Nostrand, Princeton.

    Google Scholar 

  • Herzberg, G. (1966), Molecular Spectra and Molecular Structure III: Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, Princeton.

    Google Scholar 

  • Hess, P. (1989), Photoacoustic, Photothermal and Photochemical Processes at Surfaces and in Thin Films, Hess, P., ed., Springer-Verlag, New York, pp. 1–9.

    Chapter  Google Scholar 

  • Hitchens, W., Holonyak, Jr., N., Wright, P., and Coleman, J. (1975), Low Threshold LPE InGapAs Yellow Double-Heterojunction Laser Diodes, Appl. Phys. Lett. 27, 245.

    Article  Google Scholar 

  • Hsu, C., Cohen, R., and Stringfellow, G. (1983), OMVPE Growth of InP Using TMIn, J. Cryst. Growth 63, 8.

    Article  Google Scholar 

  • Hurwitz, C., and Hsieh, J. (1978), GalnAsP/InP Avalanche Photodiodes, Appl. Phys. Lett. 32, 487.

    Article  Google Scholar 

  • Hutcherson, J. W., and Griffin, P. M. (1973), Self-Broadened Absorption Linewidths for the Krypton Resonance Transitions, J. Opt. Soc. Am. 63, 338.

    Article  Google Scholar 

  • Incropera, F. P., and DeWitt, D. P. (1985), Fundamentals of Heat and Mass Transfer, Wiley, New York, 2nd Ed., p. 548.

    Google Scholar 

  • Jonah, C., Chandra, P., and Bersohn, R. (1971), J. Chem. Phys. 55, 1903.

    Article  Google Scholar 

  • Kompa, K. L., and Smith, S. D., eds. (1979), Laser-Induced Processes in Molecules, Springer Series in Chem. Phys., Vol. 10, Springer-Verlag, New York.

    Google Scholar 

  • Konjevic, N., and Roberts, J. R. (1976), A Critical Review of the Stark Widths and Shifts of Spectral Lines from Non-Hydrogenic Atoms, J. Phys. Chem. Kef Data 5, 209–218.

    Article  Google Scholar 

  • Konjevic, N., and Wiese, W. L. (1976), Experimental Stark Widths and Shifts for Non-Hydrogenic Spectral Lines of Ionized Atoms (A Critical Review and Tabulation of Selected Data), J. Phys. Chem. Ref. Data 5, 259–277.

    Article  Google Scholar 

  • Kychakoff, G., Howe, R. D., and Hanson, R. K. (1984), Quantitative Flow Visualization Technique for Measurements in Combustion Gases, Appl. Opt. 23, 704.

    Article  Google Scholar 

  • Laidler, K. J. (1987), Chemical Kinetics, Harper and Row, New York, 3rd Ed., pp. 348–376, and 229-275.

    Google Scholar 

  • Lakowicz, J. R. (1983), Principles of Fluorescence Spectroscopy, Plenum, New York.

    Book  Google Scholar 

  • Lamarsh, J. R. (1966), Introduction to Nuclear Reactor Theory, Addison-Wesley, Massachusetts, pp. 17–22.

    Google Scholar 

  • Langmuir, I. (1916), J. Am. Chem. Soc. 38, 2221.

    Article  Google Scholar 

  • Langmuir, I. (1918), J. Am. Chem. Soc. 40, 1361.

    Article  Google Scholar 

  • Lengyel, B. A. (1971), Lasers, Interscience, New York.

    Google Scholar 

  • Lewis, G. N. (1926), Nature 118, 874.

    Article  Google Scholar 

  • Lewis, G. N., Randall, M, Pitzer, K. S., and Brewer, L. (1961), Thermodynamics, McGraw-Hill, New York.

    Google Scholar 

  • Lide, D. R., editor-in-chief (1992), CRC Handbook of Chemistry and Physics, CRC Press, Ann Arbor, 73rd ed. pp. 10–298, 10-299.

    Google Scholar 

  • Lindholm, E. (1945), Ark. Mat. Ast. Phys. A32, 1.

    Google Scholar 

  • Long, L. H. (1961), Pure Appl. Chem. 2, 61.

    Article  Google Scholar 

  • Lucht, R. P. and Laurendeau, N. M. (1979), Two-Level Model for Near Saturated Fluorescence in Diatomic Molecules, Appl. Opt. 18, 856.

    Article  Google Scholar 

  • Mahan, B. H., and Mandai, R. (1962), J. Chem. Phys. 37, 207.

    Article  Google Scholar 

  • Margenau, H., and Watson, W. W. (1936), Rev. Mod. Phys. 8, 22.

    Article  MATH  Google Scholar 

  • McNesby, J. R., Tanaka, I., and Okabe, H. (1962), J. Chem. Phys. 36, 605.

    Article  Google Scholar 

  • Miller, A. R. (1949), The Adsorption of Gases on Solids, Cambridge University Press, New York.

    Google Scholar 

  • Millikan, R. A. (1916), Phys. Rev. 7, 355.

    Article  Google Scholar 

  • Mitchell, A. C. G., and Zemansky, M. W. (1961), Resonance Radiation and Excited Atoms, Cambridge University Press, London.

    MATH  Google Scholar 

  • Mulliken, R. S., and Rieke, C. A. (1941), Repts. Progr. Phys. 8, 231.

    Article  Google Scholar 

  • Myers, G. H., Silver, D. M., and Kaufman, F. (1966), J. Chem. Phys. 44, 718.

    Article  Google Scholar 

  • Okabe, H. (1974), Chemical Spectroscopy and Photochemistry in the Vacuum Ultraviolet, Sandorfy, C., Ausloos, P. J., and Robin, M. B., eds., Reidel, Boston, p. 513.

    Chapter  Google Scholar 

  • Okabe, H. (1978), Photochemistry of Small Molecules, Wiley, New York, pp. 46–56, 61-70, 81-106.

    Google Scholar 

  • Okabe, H., and Dibeler, V. H. (1973), Photon Impact Studies of C2HCN and CH3CH in the Vacuum Ultraviolet: Heats of Formation of C2H and CH3CN, J. Chem. Phys. 59, 2430.

    Article  Google Scholar 

  • Okabe, H., and McNesby, J. R. (1961), J. Chem. Phys. 34, 668.

    Article  Google Scholar 

  • Parker, C. A. (1968), Photoluminescence of Solutions with Applications to Photochemistry and Analytical Chemistry, Elsevier, New York, pp. 86–89.

    Google Scholar 

  • Pasternack, L., Nelson, H. H., and McDonald, J. R. (1982), J. Chem. Ed. 59, 456.

    Article  Google Scholar 

  • Payne, D., and Grambling, W. (1975), Zero Material Dispersion in Optical Fibers, Electron Lett. 11, 176.

    Article  Google Scholar 

  • Pearsall, T., Miller, B., and Capik, R. (1976), Efficient Lattice-Matched Double-Heterostructure LED’s at 1.1μm from GalnAsP, Appl. Phys. Lett. 28, 499.

    Article  Google Scholar 

  • Pearse, R. W. B., and Gaydon, A. G. (1963), The Identification of Molecular Spectra, Wiley, New York.

    Google Scholar 

  • Perlman, M. L., and Rollefson, G. K. (1941), The Vapor Density of Iodine at High Temperatures, J. Chem. Phys. 9, 362.

    Article  Google Scholar 

  • Planck, M. (1901), Ann. Physik 4, 553.

    Article  MATH  Google Scholar 

  • Price, S. J. W. (1972), Decomposition of Inorganic and Organometallic Compounds, Bamford, C. H., and Tipper, C. F. H., eds., Chemical Kinetics, Vol. 4, Elsevier, Amsterdam, p. 197.

    Google Scholar 

  • Rabek, J. F. (1982), Experimental Methods in Photochemistry and Photophysics, Part 2, Wiley, New York, pp. 727–745.

    Google Scholar 

  • Rabek, J. F. (1987), Mechanisms of Photophysical Processes and Photochemical Reactions in Polymers: Theory and Applications, Wiley, New York.

    Google Scholar 

  • Reck, G. P., Takebe, H., and Mead, C. A. (1965), Phys. Rev. A137, 683.

    Article  Google Scholar 

  • Rosen, B. (1970), Spectroscopic Data Relative to Diatomic Molecules, International Tables of Selected Constants, Vol. 17, Pergamon Press, New York.

    Google Scholar 

  • Ross, S., and Olivier, J. P. (1964), On Physical Adsorption, Interscience, New York.

    Google Scholar 

  • Rothschild, M. (1989), Spectroscopy and Photochemistry of Gases, Adsorbates, and Liquids, Laser Microfabrication: Thin Film Processes and Lithography, Ehrlich, D. J., and Tsao, J. Y., eds., Academic, New York, pp. 163–230.

    Chapter  Google Scholar 

  • Shimoda, K. (1983), Introduction to Laser Physics, 2nd. Ed., Springer-Verlag, New York, pp. 78–84.

    Google Scholar 

  • Solanki, R., and Collins, G. J. (1983), Appl. Phys. Lett. 42, 662.

    Article  Google Scholar 

  • Solanki, R., Boyer, P. K., Mahan, J. E., and Collins, G. J. (1981), Appl. Phys. Lett. 38, 572.

    Article  Google Scholar 

  • Solanki, R., Ritchie, W. H., and Collins, G. J. (1983), Appl. Phys. Lett. 43, 454.

    Article  Google Scholar 

  • Somerjai, G. A. (1981), Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca.

    Google Scholar 

  • Spinks, J. W. T., and Woods, R. J. (1990), An Introduction to Radiation Chemistry, Wiley, New York, 3rd Ed., pp. 39–49.

    Google Scholar 

  • Stark, J. (1908), Phys. Z 9, 889 and 894.

    Google Scholar 

  • Steiner, U. E., and Wolff, H. J. (1991), Magnetic Field Effects in Photochemistry, Photochemistry and Photophysics, Vol. IV, Rabek, J. F., ed., CRC Press, Boston, pp. 1–130.

    Google Scholar 

  • Stull, D. R., and Prophet, H. (Project Directors) (1971, JANAF Thermochemical Tables, 2nd Ed., Nat. Stand. Ref. Data Ser., National Bureau of Standards (US), Vol. 37.

    Google Scholar 

  • Stull, D. R., Westrum, Jr., E. F., and Sinke, G. C. (1969), The Chemical Thermodynamics of Organic Compounds, Wiley, New York.

    Google Scholar 

  • Taylor, H. S. (1925), Froc. Roy. Soc. Lond. A108, 105.

    Article  Google Scholar 

  • Taylor, H. S. (1931), J. Am. Chem. Soc. 53, 578.

    Article  Google Scholar 

  • Technical Staff, February 28, (1966), Electric Field Raises Polymerization Rate, Chem. Eng. News, 44(9), 37.

    Article  Google Scholar 

  • Thompson, H. W., and Linnett, J. W. (1936), Proc. Roy. Soc. Lond. A156, 108.

    Google Scholar 

  • Trotman-Dickenson, A. F., and Milne, G. S. (1967), Tables of Bimolecular Gas Reactions, Vol. 9, Nat. Stand. Ref. Data Ser., National Bureau of Standards, USA.

    Google Scholar 

  • Turro, N. J. (1967), Molecular Photochemistry, Benjamin, New York, pp. 30–42.

    Google Scholar 

  • Vincenti, W. G., and Kruger, C. H. (1965), Introduction to Physical Gas Dynamics, Wiley, New York.

    Google Scholar 

  • von Grotthuss, C. J. D. (1819), Ann. Phys. 61, 50.

    Article  Google Scholar 

  • Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., and Schumm, R. H. (1968), Selected Values of Chemical Thermodynamic Properties, Tech. Note, National Bureau of Standards (US), New York, pp. 270–273.

    Google Scholar 

  • Wagner, P. J. (1971), Kinetic Analyses of Photochemical Reactions that Involve Quenching of Two Excited States, Mol. Photochem. 3, 23.

    Google Scholar 

  • Walsh, A., and Warsop, R. (1962), The Ultraviolet Spectra of Hydrides of Group V Elements, Advances in Molecular Spectroscopy, Proc., IVth Int. Meeting Molecular Spectroscopy, Vol. 2, Mangini, A., ed., Pergamon, Oxford, pp. 582–591.

    Google Scholar 

  • Wayne, R. P. (1988), Principles and Applications of Photochemistry, Oxford University Press, New York, p. 80.

    Google Scholar 

  • Weisskopf, V. F. (1932), Z. Physik 75, 287.

    Article  Google Scholar 

  • White, H. E. (1934), Introduction to Atomic Spectra, McGraw-Hill, New York.

    Google Scholar 

  • Wieder, H., Clawson, A., and McWilliams, G. (1977), InGaAsP/InP Heterojunction Photo-diodes, Appl. Phys. Lett. 31, 468.

    Article  Google Scholar 

  • Wiese, W. L. (1965), Line Broadening, Plasma Diagnostic Techniques, Huddlestone, R. H. and Leonard, S. L., eds., Academic, New York, pp. 265–317.

    Google Scholar 

  • Wilkinson, F. (1980), Chemical Kinetics and Reaction Mechanisms, Van Nostrand-Reinhold, New York, pp. 249–291.

    Google Scholar 

  • Wolfbeis, O. S., ed. (1993), Fluorescence Spectroscopy: New Methods and Applications, Springer-Verlag, New York.

    Google Scholar 

  • Wood, T. H., White, J. C., and Thacker, B. A. (1983), UV Photodecomposition for Metal Deposition: Gas vs. Surface Phase Processes, Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., North-Holland, New York, pp. 35–41.

    Google Scholar 

  • Young, D. M., and Crowell, A. D. (1962), Physical Adsorption of Gases, Butterworths, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazumder, J., Kar, A. (1995). Photolytic LCVD. In: Theory and Application of Laser Chemical Vapor Deposition. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1430-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1430-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1432-3

  • Online ISBN: 978-1-4899-1430-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics