Skip to main content

Commonalities and Contrasts in the Organization of the Maize and Sorghum Nuclear Genomes

  • Chapter
Genomes of Plants and Animals

Abstract

Analysis of plant genome organization has long been the realm of plant geneticists and cytogeneticists. The multipartite (several chromosome) nature of the nuclear genome, heritable and line-specific variations in the cytology or number of chromosomes (Blakeslee, 1922; Randolph and McClintock, 1926; Stadler, 1928; Kostoff, 1929; Philip and Huskins, 1931; McClintock, 1932; Creighton, 1934; Sears, 1939; Swanson, 1940), the linear order of genes whose linkage could be determined by analysis of crossover exchanges in meiosis, the physical exchange of chromosomal segments associated with recombination (Creighton and McClintock, 1931), the properties of telomeres (McClintock, 1941), the behavior of primary and secondary constrictions as centromeres in mitosis and meiosis (Prakken and Muntzing, 1942; Rhoades and Vilkomerson, 1942), the contribution of a particular chromosomal segment (the nucleolar organizer, NOR) to formation of the nucleolus (McClintock, 1934), the existence and preferential transmission of supernumerary (B) chromosomes (Longley, 1927; Darlington and Thomas, 1941; Roman, 1947), the biology of one class of highly repetitive DNA (the knob satellite) (Rhoades and Dempsey, 1966; Peacock et al., 1981), and the properties of a key class of middle repetitive DNAs (transposable elements) (McClintock, 1950) were all identified in plants concurrent with, or prior to, their discovery in other species. Much of this initial work was performed with maize, partly due to the early and excellent characterization of its karyotypic properties (Longley, 1924).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad, P.C., Vaury, C., Pelisson, A., Chaboissier, M.-C., Busseau, I., and Bucheton, A., 1989, A LINE element, the I factor of Drosophila teissieri, is able to transpose in other Drosophila species, Proc. Natl. Acad. Sci. USA 86: 8887.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, S., Anderson, J.A., Sorrells, M.E., and Tanksley, S.D., 1993, Homoeologous relationships of rice, wheat and maize chromosomes, Mol. Gen. Genet 241: 483.

    Article  PubMed  CAS  Google Scholar 

  • Antequera, F., and Bird, A., 1988, Unmethylated CpG islands associated with the genes in higher plant DNA, EMBO J. 7: 2295.

    PubMed  CAS  Google Scholar 

  • Arumuganathan, K., and Earle, ED., 1991, Nuclear DNA content of some important plant species, Plant Mol. Biol. Rep 9: 208.

    Article  CAS  Google Scholar 

  • Avramova, Z., SanMiguel, P., Georgieva, E, and Bennetzen, J.L, 1995, Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adhl, Plant Cell,in press.

    Google Scholar 

  • Bennetzen, J.L, 1995a, The use of comparative genome mapping in the identification, cloning and manipulation of important plant genes, in:“The Impact of Plant Molecular Genetics,” B.W.S. Sobral, ed., Birkhauser, Boston, in press.

    Google Scholar 

  • Bennetzen, J.L, 1995b, The contributions of retroelements to plant genome structure, function, and evolution, Trends Micro,in press.

    Google Scholar 

  • Bennetzen, J.L, and Freeling, M., 1993, Grasses as a single genetic system: genome composition, collinearity and compatibility, Trends Genet. 9: 259.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L, Schrick, K., Springer, P.S., Brown, W.E., and SanMiguel, P., 1994, Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA, Genome 37: 565.

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen, J.L., and Springer, P.S., 1994, The generation of Mutator transposable element subfamilies in maize, Theor. Appt. Genet 87: 657.

    CAS  Google Scholar 

  • Binelli. G., Gianfranceschi, L, Pe, M.E., Taramino, G., Busso, C., Stenhouse, J., and Ottaviano, E, 1992, Similarity of maize and sorghum genomes as revealed by maize RFLP probes, Theor. Appl. Genet 84: 10.

    Article  CAS  Google Scholar 

  • Blakeslee, A.F., 1922, Variation in Datura due to changes in chromosome number, Amer. Nat 66: 16.

    Article  Google Scholar 

  • Bureau, T.E, and Wessler, S.R, 1994a, Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses, Proc. Natl. Acad. Sci. USA 91: 1411.

    Article  PubMed  CAS  Google Scholar 

  • Bureau, T.E, and Wessler, S.R., 1994b, Stowaway. A new family of inverted repeat elements associated with the genes of monocotyledenous and dicotyledenous plants, Plant Cell 6: 907.

    PubMed  CAS  Google Scholar 

  • Chittenden, LM., Schertz, K.F., Lin, Y.-R., Wing, R.A., and Paterson, A.H., 1994, A detailed RFLP map of Sorghum bicolor X S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments, Theor. Appl. Genet, 87: 925.

    Article  CAS  Google Scholar 

  • Civardi, L, Xia, Y., Edwards, K.J., Schnable, P.S., and Nikolau, B.J., 1994, The relationship between genetic and physical distances in the clones al-sh2 interval of the Zea mays L genome, Proc. Natl. Acad. Sci. USA 91: 8268.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, H.B., 1934, Three cases of deficiency in chromosome 9 in Zea mays, Proc. Natl. Acad. Sci. USA 20: 111.

    Article  PubMed  CAS  Google Scholar 

  • Creighton, H.B., and McClintock, B., 1931, A correlation of cytological and genetical crossing-over in Zea mays, Proc. Nad. Acad. Sci. USA 17: 492.

    Article  CAS  Google Scholar 

  • Darlington, C.D., and Thomas, P.T., 1941, Morbid mitosis and the activity of inert chromosomes in Sorghum, Proc. Roy. Soc, London, B, 130: 127.

    Article  Google Scholar 

  • Doebley, J., Durbin, M., Golenberg, EM., Clegg, M.T., and Ma, D.P., 1990, Evolutionary analysis of the large subunit of carboxylase (rbcL) nucleotide sequence among the grasses (Gramineae), Evolution 44: 1097.

    Article  CAS  Google Scholar 

  • Doggett, H., 1988, “Sorghum,” John Wiley and Sons, New York.

    Google Scholar 

  • Flavell, RB., 1994, Inactivation of gene expression in plants as a consequence of specific sequence duplication, Proc. Natl. Acad. Sci. USA 91: 3490.

    Article  PubMed  CAS  Google Scholar 

  • Flavell, RB., Bennett, M.D., Smith, J.B., and Smith, D.B. 1974, Genome size and proportion of repeated nucleotide sequence DNA in plants, Biochem. Genet 12: 257.

    Article  PubMed  CAS  Google Scholar 

  • Hake, S, and Walbot, V., 1980, The genome of Zea mays, its organization and homology to related grasses, Chromosoma 79: 251.

    Article  CAS  Google Scholar 

  • Helentjaris, T., Weber, D.L, and Wright, S., 1988, Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms, Genetics 118: 353.

    PubMed  CAS  Google Scholar 

  • Henikoff, S., 1990, Position effect variegation after 60 years, Trends Genet. 6: 422.

    Article  PubMed  CAS  Google Scholar 

  • Hulbert, S.H., Richter, T.E, Axtell, J.D., and Bennetzen, J.L, 1990, Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes, Proc. Natl. Acad. Sci. USA 87: 4251.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y.-K., and Bennetzen, J.L, 1994, Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bsl retroelement of maize, Plant Cell 6: 1177.

    PubMed  CAS  Google Scholar 

  • Jorgensen, RA., 1995, Cosuppression, flower color patterns, and metastable gene expression states, Science 268: 686.

    Article  PubMed  CAS  Google Scholar 

  • Kellum, R. and Shedl, P., 1991, A position-effect assay for boundaries of higher order chromosomal domains, Cell 64: 941.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, M.G., 1992, Horizontal transfer of P elements and other short inverted repeat transposons, Genetica 86: 275.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A., Terzian, C., Santamaria, P., Pelisson, A., Prud’homme, N., and Bucheton, A., 1994, Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster, Proc. Nad. Acad. Sci. USA 91: 1285.

    Article  CAS  Google Scholar 

  • Kostoff, D., 1929, An androgenic Nicotiana haploid, Zeitschr. Zellforsch 9: 640.

    Article  Google Scholar 

  • Laurie, D.A., and Bennett, M.D., 1985, Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation, Heredity 55: 307.

    Article  Google Scholar 

  • Longley, A.E, 1924, Chromosomes in maize and maize relatives, J. Agr. Res 28: 673.

    Google Scholar 

  • Longley, A.E, 1927, Supernumerary chromosomes in Zea mays, J. Agr. Res 35: 769.

    Google Scholar 

  • MacRae, A.F., and Clegg, M.T., 1992, Evolution of Ac and Ds1 elements in select grasses (Poaceae), Genetica 86: 55.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1932, A correlation of ring-shaped chromosomes with variegation in Zea mays, Proc. Nad. Acad. Sci. USA 18: 677.

    Article  CAS  Google Scholar 

  • McClintock, B., 1934, The relation of a particular chromosomal element to the development of the nucleoli in Zea mays, Zeitschrift fur Zellforschung und mikroskopische Anatomie 21: 294.

    Google Scholar 

  • McClintock, B., 1941, The stability of broken ends of chromosomes in maize, Genetics 26: 234.

    PubMed  CAS  Google Scholar 

  • McClintock, B., 1950, The origin and behavior of mutable loci in maize. Proc. Nad. Acad. Sci. USA 36: 344.

    Article  CAS  Google Scholar 

  • Melake-Berhan, A., Hulbert, S.H., Butler, LG., and Bennetzen, J.L, 1993, Structure and evolution of the genomes of Sorghum bicolor and Zea mays, Theor. Appl. Genet 86: 598.

    Article  Google Scholar 

  • Michaelson, M.J., Price, H.J., Ellison, J.R., and Johnston, J.S., 1991, Comparison of plant DNA contents determined by feulgen microspectrophotometry and laser flow cytometry, Am. J. Bot 78: 183.

    Article  CAS  Google Scholar 

  • Moore, G., Abbo, S., Cheung, W., Foote, T., Gale, M., Koebner, R, Leitch, A., Leitch, I., Money, T., Stanscombe, P., Yano, M., and Flavell, R., 1993, Key features of cereal genome organisation as revealed by the use of cytosine methylation-sensitive restriction endonucleases, Genomics 15: 472.

    Article  PubMed  CAS  Google Scholar 

  • Peacock, W.J., Dennis, E.S., Rhoades, M.M., and Pryor, A.J., 1981, Highly repeated DNA sequence limited to knob heterochromatin in maize, Proc. Natl. Acad. Sci. USA 78: 4490.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, M.G., Lee, M., Bramel-Cox, P., Woodman, W., Doebley, J., Whitkus, R, 1994, Construction of an RFLP map in sorghum and comparative mapping in maize, Genome 37: 236.

    Article  PubMed  CAS  Google Scholar 

  • Philip, J., and Huskins, C.L, 1931, The cytology of Mathiola incana R. Br., especially in relation to the inheritance of double flowers, J. Genet 24: 359.

    Article  Google Scholar 

  • Phillips, RL, Kleese, RA., and Wang, S.S., 1971, The nucleolus organizer region of maize (Zea mays L): chromosomal site of DNA complementary to ribosomal RNA, Chromosoma 36: 79.

    Article  Google Scholar 

  • Prakken, R., and Muntzing, A., 1942, A meiotic peculiarity in rye, simulating a terminal centromere, Hereditas 28: 441.

    Article  Google Scholar 

  • Purugganan, M.D., and Wessler, S.R., 1994, Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon, Proc. Natl. Acad. Sci. USA 91: 1 1674.

    Google Scholar 

  • Ragab, R.A., Dronavalli, S., Saghai Maroof, M.A., and Yu, Y.G., 1994, Construction of a sorghum RFLP map using sorghum and maize DNA probes, Genome 37: 590.

    Article  PubMed  CAS  Google Scholar 

  • Randolph, LF., and McClintock, B., 1926, Polyploidy in Zea mays L, Amer. Nat 60: 99.

    Article  Google Scholar 

  • Rhoades, M.M., and Dempsey, E, 1966, The effect of abnormal chromosome 10 on preferential segregation and crossing over in maize, Genetics 53: 989.

    PubMed  CAS  Google Scholar 

  • Rhoades, M.M., and Vilkomerson, H., 1942, On the anaphase movement of chromosomes, Proc. Natl. Acad. Sci. USA, 28: 433.

    Article  PubMed  CAS  Google Scholar 

  • Roman, H., 1947, Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize, Genetics 32: 391.

    PubMed  CAS  Google Scholar 

  • Sears, ER., 1939, Cytogenetic studies with polyploid species of wheat. I. Chromosomal aberrations in the progeny of a haploid of Triticum vulgare, Genetics, 24: 509.

    PubMed  CAS  Google Scholar 

  • Springer, P.S., Edwards, K.J., and Bennetzen, J.L, 1994, DNA class organization on maize Adh1 yeast artificial chromosomes, Proc. Natl. Acad. Sci. USA 91: 863.

    Article  PubMed  CAS  Google Scholar 

  • Springer, P.S., Zimmer, E.A., and Bennetzen, J.L, 1989, Genomic organization of the ribosomal DNA of sorghum and its close relatives, Theor. Appl. Genet 77: 844.

    Article  CAS  Google Scholar 

  • Stadler, LJ., 1928, Mutations in barley induced by X-rays and radium, Science 68: 186.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, C.P., 1940, The distribution of inversions in Tradescantia, Genetics 25: 438.

    PubMed  CAS  Google Scholar 

  • Whitkus, R, Doebley, J., and Lee, M., 1992, Comparative genome mapping of sorghum and maize, Genetics 132: 1119.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bennetzen, J.L. et al. (1996). Commonalities and Contrasts in the Organization of the Maize and Sorghum Nuclear Genomes. In: Gustafson, J.P., Flavell, R.B. (eds) Genomes of Plants and Animals. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0280-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0280-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0282-5

  • Online ISBN: 978-1-4899-0280-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics