Advertisement

Smart Thin Films via the Sol-Gel Route

  • Jacques Livage

Abstract

The sol-gel route appears to be very convenient for the deposition of thin films by such techniques as spin-coating or dip-coating.1 The sol-gel process is based on the hydrolysis and condensation of molecular precursors.2 The molecular engineering of these precursors provides a chemical control of condensation reactions giving nanostructured the oxide materials. In sol-gel chemistry two chemical routes are currently followed depending on the nature of the molecular precursors; the inorganic route with metal salts in aqueous solutions and the metal-organic route with metal alkoxides in organic solvents. In both cases the reaction is initiated via hydrolysis in order to get reactive M-OH groups. This reaction can be simply performed by adding water to an alkoxide or by changing the pH of an aqueous solution.3 Condensation then occurs leading to the formation of metal-oxygen-metal bonds. More and more condensed species are formed from the solution leading to oligomers, oxopolymers, colloids, gels or precipitates. Oxopolymers and colloidal particles give rise to sols which can be shaped, gelled, dried and densified in order to get powders, films, fibres or monolithic glasses.1,2

Keywords

Propylene Carbonate Vanadium Oxide Vanadium Pentoxide Vanadium Dioxide Molecular Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sol-Gel Technology, Ed. L. Klein, Noyes Pub., Park Ridge (USA) 1988.Google Scholar
  2. 2.
    C.J. Brinker, G.W. Scherer, Sol-Gel Science, Academic Press, San Diego (1990).Google Scholar
  3. 3.
    J. Livage, M. Henry, C. Sanchez, Progress in Solid State Chemistry, 18:259 (1988).CrossRefGoogle Scholar
  4. 4.
    J. Livage, Chem. Mater., 3:578 (1991).CrossRefGoogle Scholar
  5. 5.
    M. Henry, J.P. Jolivet, J. Livage, Structure and Bonding, 77:153 (1992).CrossRefGoogle Scholar
  6. 6.
    JJ. Legendre, J. Livage, J. Colloid and Interface Sci., 94:75 (1983).CrossRefGoogle Scholar
  7. 7.
    P. Aldebert, N. Baffier, N. Gharbi, J. Livage, Mater. Res. Bull, 16:669 (1981).CrossRefGoogle Scholar
  8. 8.
    J. Livage, Solid State Ionics, 50:307 (1992).CrossRefGoogle Scholar
  9. 9.
    A. Inubushi, S. Masuda, M. Okubo, A. Matsumoto, H. Sadamura, K. Suzuki, High Tech Ceramics, Ed. P. Vicenzini, Elsevier Pub., 2165 (1987).Google Scholar
  10. 10.
    C. Guestaux, J. Leauté, C. Virey, J. Vial, US Patent 3,658,573 (april 1972).Google Scholar
  11. 11.
    R. Baddour, J.P. Pereira-Ramos, R. Messina, J. Perichon, J. Electrocutai. Chem., 277:359 (1990).CrossRefGoogle Scholar
  12. 12.
    R. Baddour, J.P. Pereira-Ramos, R. Messina, J. Perichon, J. Electroanal. Chem., 314(1991) 81.CrossRefGoogle Scholar
  13. 13.
    K. West, B. Zachau-Christiansen, M.J.L. Ostergard, T. Jacobsen, J. Power Sources, 20:165 (1987).CrossRefGoogle Scholar
  14. 14.
    P. Aldebert, N. Baffier, J.J. Legendre, J. Livage, Rev. Chimie Minerale, 19:485 (1982).Google Scholar
  15. 15.
    Gharbi, N., Sanchez, C., Livage, J., Lemerle, J., Nejem, L., Lefebvre, J., Inorg. Chem., 21:2758(1982).CrossRefGoogle Scholar
  16. 16.
    L. Znaidi, N. Baffier, M. Huber, Mat. Res. Bull., 24:1501 (1989).CrossRefGoogle Scholar
  17. 17.
    J.P. Pereira-Ramos, L. Znaidi, N. Baffier, R. Messina, Solid State Ionics, 28-30:886 (1988).CrossRefGoogle Scholar
  18. 18.
    S. Bach, J.P. Pereira-Ramos, N. Baffier, R. Messina, J. Electrochem. Soc, 137:1042(1990).CrossRefGoogle Scholar
  19. 19.
    J.P. Pereira-Ramos, S. Bach, J. Farcy, N. Baffier, Mat. Res. Soc. Symp. Proc, 369:191 (1995).CrossRefGoogle Scholar
  20. 20.
    S. Maingot, R. Baddour, J.P. Pereira-Ramos, N. Baffier, P. Wilmann, J. Electrochem. Soc. 11:L158 (1993).CrossRefGoogle Scholar
  21. 21.
    B. Pecquenard, J.C. Badot, D. Gourier, N. Baffier, R. Morineau, J. Solid State Chem., 118:10(1995).CrossRefGoogle Scholar
  22. 22.
    M. Nabavi, C. Sanchez, J. Livage, Ear. J. Solid State Inorg. Chem., 28:1173 (1991).Google Scholar
  23. 23.
    G. Guzman, R. Morineau, J. Livage, Mat. Res. Bull., 29:509 (1994).CrossRefGoogle Scholar
  24. 24.
    C.G. Granqvist, in Handbook of Inorganic Electro chromic Materials, Elsevier Ed., Amsterdam (1995).Google Scholar
  25. 25.
    J. Livage, Solid State Ionics, 86-88:935 (1996).CrossRefGoogle Scholar
  26. 26.
    F.J. Morin, Phys. Rev. Lett., 3:34 (1959).CrossRefGoogle Scholar
  27. 27.
    J.B. Goodenough, J. Solid State Chem., 3:490 (1971).CrossRefGoogle Scholar
  28. 28.
    J. Livage, G. Guzman, F. Beteille, P. Davidson, J. Sol-Gel Sci. Techn. (in press).Google Scholar
  29. 29.
    G. Guzman, F. Beteille, R. Morineau, J. Livage, J. Mater. Chem., 6:505 (1996).CrossRefGoogle Scholar
  30. 30.
    P. Davidson, A. Garreau, J. Livage, Liquid Crystals, 16:905 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Jacques Livage
    • 1
  1. 1.Chimie de la Matière CondenséeUniversité Pierre et Marie CurieParisFrance

Personalised recommendations