Advertisement

Slave-Boson Approach to Electron Correlations and Magnetism in Low-Dimensional Systems

  • E. Muñoz Sandoval
  • J. Dorantes-Dávila
  • G. M. Pastor

Abstract

The electronic and magnetic properties of low-dimensional systems are investigated by using a saddle-point slave-boson approximation to the Hubbard model. A local approach based on a real-space expansion of the local Green’s function is presented. The changes in the electronic properties are determined as a function of the local coordination number z. Results are given for the magnetic moments, magnetic order, average number of double occupations and hopping renormalizations. The environment dependence of the electronic correlations is discussed.

Keywords

Hubbard Model Coulomb Energy Local Magnetic Moment Itinerant Electron Coulomb Interaction Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for instance, the papers on Magnetoelectronics,Physics Today, April 1995, p. 24ff.Google Scholar
  2. 2.
    V. Heine, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic, New York, 1980 ), Vol. 35, p. 1.Google Scholar
  3. 3.
    D. Tomânek, S. Mukherjee, and K. H. Bennemann, Phys. Rev. B 28, 665 (1983).CrossRefGoogle Scholar
  4. 4.
    G. M. Pastor, J. Dorantes-Davila, and K. H. Bennemann, Chem. Phys. Lett. 148, 459 (1988).CrossRefGoogle Scholar
  5. 5.
    L. M. Falicov and G. A. Somorjai, Proc. Natl. Acad. Sci. USA 82, 2207 (1985).CrossRefGoogle Scholar
  6. 6.
    D. R. Salahub and R. P. Messmer, Surf. Sci. 106, 415 (1981);CrossRefGoogle Scholar
  7. K. Lee, J. Callaway, and S. Dhar, Phys. Rev. B 30, 1724 (1985);CrossRefGoogle Scholar
  8. K. Lee, J. Callaway, K. Wong, R. Tang, and A. Ziegler, ibid. 31, 1796 (1985).Google Scholar
  9. 7.
    G. M. Pastor, J. Dorantes-Davila, and K. H. Bennemann, Physica B 149, 22 (1988);CrossRefGoogle Scholar
  10. G. M. Pastor, J. Dorantes-Davila, and K. H. Bennemann, Phys. Rev. B 40, 7642 (1989);CrossRefGoogle Scholar
  11. G. M. Pastor, J. Dorantes-Davila, and K. H. Bennemann, J. Dorantes-Davila, H. Dreyssé, and G. M. Pastor, Phys. Rev. B 46, 10432 (1992).CrossRefGoogle Scholar
  12. 8.
    I. M. L. Billas, J. A. Becker, A. Châtelain, and W. A. (le Heer, Phys. Rev. Lett. 71, 4067 (1993);CrossRefGoogle Scholar
  13. I. M. L. Billas, A. Châtelain, and W. A. de Heer, Science 265, 1662 (1994);CrossRefGoogle Scholar
  14. J. P. Bucher, D. C. Douglas, and L. A. Bloomfield, Phys. Rev. Lett. 66, 3052 (1991);CrossRefGoogle Scholar
  15. J. P. Bucher, D. C. Douglas, and L. A. Bloomfield, Phys. Rev. B 45, 6341 (1992);CrossRefGoogle Scholar
  16. D. C. Douglass, A. J. Cox, J. P. Bucher, and L. A. Bloomfield, Phys. Rev. B 47, 12874 (1993);CrossRefGoogle Scholar
  17. FS. E. Apsel, J. W. Emert, J. Deng, and L. A. Bloomfield, Phys. Rev. Lett. 76, 1441 (1996).CrossRefGoogle Scholar
  18. 9.
    A. J. Cox, J. G. Louderback, and L. A. Bloomfield, Phys. Rev. Lett. 71, 923 (1993);CrossRefGoogle Scholar
  19. A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, Phys, Rev. B 49, 12295 (1994).CrossRefGoogle Scholar
  20. 10.
    J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963);CrossRefGoogle Scholar
  21. J. Hubbard, Proc. R. Soc. London Ser. A 281, 401 (1964);CrossRefGoogle Scholar
  22. J. Kanamori, Prog. Theor. Phys. 30, 275 (1963);CrossRefGoogle Scholar
  23. M. C. Gntzwiller, Phys. Rev. Lett. 10, 159 (1963).CrossRefGoogle Scholar
  24. 11.
    G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).CrossRefGoogle Scholar
  25. E. Munoz-Sandoval, J. Dorantes-Davila, and G. M. Pastor, submitted to Phys. Rev. B (1997).Google Scholar
  26. 13.
    R. Haydock, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull, ( Academic, New York, 1980 ), Vol. 35, p. 215.Google Scholar
  27. 14.
    Y. Nagaoka, Solid State Commun. 3, 409 (1965);CrossRefGoogle Scholar
  28. D. J. Thouless, Proc. Phys. Soc. London 86, 893 (1965);CrossRefGoogle Scholar
  29. Y. Nagaoka, Phys. Rev. 147, 392 (1996);CrossRefGoogle Scholar
  30. H. Tasaki, Phys. Rev. 40, 9192 (1989).CrossRefGoogle Scholar
  31. 15.
    A. Vega, J. Dorantes-Davila, G. M. Pastor, and L. C. Balbas, Z. Phys. 1) 19, 263 (1991).Google Scholar
  32. 16.
    S. M. M. Evans, Europhys. Lett. 20 53 (1992).CrossRefGoogle Scholar
  33. 17.
    P. Denteneer and M. Blaauboer, J. Phys. Condens. Matter 7, 151 (1995).CrossRefGoogle Scholar
  34. 18.
    M. Deeg, H. Fehske, and H. Biitner, Z. Phys. B 91, 31 (1993).CrossRefGoogle Scholar
  35. 19.
    R. Frésard and K. Doll, Proceedings of NATO Advanced Research Workshop on the Physics and Mathematical Physics of the Hubbard Model, edited by Dionys Baeriswyl, David K. Campbell, Jose M. P. Carmelo, Francisco Guinea, and Enrique Louis NATO ASI Series, Series B: Physics 343, 385 ( Plenum Press, New York, 1995 ).Google Scholar
  36. 20.
    W. Zhang, M. Avignon, and K. IL Bennemann, Phys. Rev. B 45, 12 478 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • E. Muñoz Sandoval
    • 1
  • J. Dorantes-Dávila
    • 1
  • G. M. Pastor
    • 2
  1. 1.Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis Potosí, S.L.P.Mexico
  2. 2.Laboratoire de Physique QuantiqueUniversité Paul SabatierToulouseFrance

Personalised recommendations