Skip to main content

Monge-Ampère Operators, Lelong Numbers and Intersection Theory

  • Chapter
Complex Analysis and Geometry

Part of the book series: The University Series in Mathematics ((USMA))

Abstract

This chapter is a survey article on the theory of Lelong numbers, viewed as a tool for studying intersection theory by complex differential geometry. We have not attempted to make an exhaustive compilation of the existing literature on the subject, nor to present a complete account of the state-of-the-art. Instead, we have tried to present a coherent unifying frame for the most basic results of the theory, based in part on our earlier works [7–10] and on Siu’s fundamental work [30]. To a large extent, the asserted results are given with complete proofs, many of them substantially shorter and simpler than their original counterparts. We only assume that the reader has some familiarity with differential calculus on complex manifolds and with the elementary facts concerning analytic sets and plurisubharmonic functions. The reader can consult Lelong’s books [25, 26] for an introduction to the subject. Most of our results still work on arbitrary complex analytic spaces, provided that suitable definitions are given for currents, plurisubharmonic functions, etc., in this more general situation. We have refrained ourselves from doing so for simplicity of exposition; we refer the reader to Ref. 9 for the technical definitions required in the context of analytic spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Azhari, Sur la conjecture de Chudnovsky-Demailly et les singularités des hypersurfaces algébriques, Ann. Inst. Fourier 40, 106–117 (1990).

    Article  MathSciNet  Google Scholar 

  2. E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37, 1–44 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149, 1–41 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Bombieri, Algebraic values of meromorphic maps, Invent. Math. 10, 267–287 (1970); Addendum, Invent. Math. 11, 163–166 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. S. Chern, H. I. Levine, and L. Nirenberg, Intrinsic norms on a complex manifold, Global Analysis (papers in honor of K. Kodaira), pp. 119–139, Univ. of Tokyo Press, Tokyo, 1969.

    Google Scholar 

  6. G. V. Chudnovsky, Singular points on complex hypersurfaces and multidimensional Schwarz lemma, Sérn. Delange-Pisot-Poitou, 21e année, 1979/80, Progress in Math., No. 12, pp. 29–69 (Marie-José Bertin ed.), Birkhäuser (1981).

    Google Scholar 

  7. J.-P. Demailly, Formules de Jensen en plusieurs variables et applications arithmétiques, Bull. Soc. Math. France 110, 75–102 (1982).

    MathSciNet  MATH  Google Scholar 

  8. J.-P. Demailly, Sur les nombres de Lelong associés à l’image directe d’un courant positif fermé, Ann. Inst. Fourier (Grenoble) 32, 37–66 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines, Mém. Soc. Math. France (N.S.) 19, 1–124 (1985).

    Google Scholar 

  10. J.-P. Demailly, Nombres de Lelong généralisés, théorèmes d’intégralité et d’analyticité, Acta Math. 159, 153–169 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-P. Demailly, Singular Hermitian Metrics on Positive Line Bundles, Lecture Notes in Math. Vol. 1507, Springer-Verlag, Berlin and New York (1992).

    Google Scholar 

  12. J.-P. Demailly, A numerical criterion for very ample line bundles, preprint No. 153, Institut Fourier, Univ. Grenoble I (1990) to appear in J. Diff. Geom. (1992).

    Google Scholar 

  13. J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Alg. Geom. 1, 361–409 (1992).

    MathSciNet  MATH  Google Scholar 

  14. R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180, 175–203 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  15. H. El Mir, Sur le prolongement des courants positifs fermés, Acta Math. 153, 1–45 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Esnault and E. Viehweg, Sur une minoration du degré d’hypersurfaces s’annulant en certains points, Math. Ann. 263, 75–86 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Federer. Geometric Measure Theory, Springer-Verlag, Berlin and New York (1969).

    MATH  Google Scholar 

  18. R. Harvey, Holomorphic chains and their boundaries, Proc. Symp. Pure Math., Vol. 30, Part 1, pp. 309–382, Several Complex Variables (R. O. Wells, ed.), American Mathematical Society, Providence, RI (1977).

    Google Scholar 

  19. L. Hörmander, An introduction to Complex Analysis in several variables, 3rd ed., North-Holland, Amsterdam (1990).

    MATH  Google Scholar 

  20. J. R. King, A residue formula for complex subvarieties, in Proc. Carolina Conf. on Holomorphic Mappings and Minimal Surfaces, pp. 43–56, University of North Carolina, Chapel Hill (1970).

    Google Scholar 

  21. C. O. Kiselman, The partial Legendre transformation for plurisubharmonic functions, Invent. Math. 39, 137–148 (1978).

    Article  MathSciNet  Google Scholar 

  22. C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107, 295–304 (1979).

    MathSciNet  MATH  Google Scholar 

  23. C. O. Kiselman, Sur la Définition de l’Opérateur de Monge-Ampère Complexe, Lecture Notes in Math., Vol. 1094, pp. 139–150, Springer-Verlag, Berlin (1984).

    Google Scholar 

  24. C. O. Kiselman, Un nombre de Lelong raffiné, preprint Uppsala 1986, Sém. d’Analyse Complexe et Géométrie 1985–87, Fac. des Sciences de Tunis et Fac. des Sciences et Techniques de Monastir, Maroc (1987).

    Google Scholar 

  25. P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85, 239–262 (1957).

    MathSciNet  MATH  Google Scholar 

  26. P. Lelong, Fonctionnelles analytiques et fonctions entières (n variables), in Sém. Math. Supérieures, 6e session, Presses Univ. Montreal (1968).

    Google Scholar 

  27. P. Lelong, Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, New York and Dunod, Paris (1969).

    MATH  Google Scholar 

  28. R. Remmert, Projectionen analytischer Mengen, Math. Ann. 130, 410–441 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133, 328–370 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J. 52, 157–197 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27, 53–156 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Skoda, Sous-ensembles analytiques d’ordre fini ou infini dans n , Bull. Soc. Math. France 100, 353–408 (1972).

    MathSciNet  MATH  Google Scholar 

  33. H. Skoda, Estimations L 2 pour l’opérateur ô et applications arithmétiques, in Sém. P. Lelong (Analyse), Lecture Notes in Math., Vol. 538, pp. 314–323, Springer-Verlag, Berlin (1977).

    Google Scholar 

  34. H. Skoda, Prolongement des courants positifs fermés de masse finie, Invent. Math. 66, 361–376 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Stoll, The multiplicity of a holomorphic map, Invent. Math. 2, 15–58 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Thie. The Lelong number of a point of a complex analytic set, Math. Ann.112, 269–312 (1967).

    Article  MathSciNet  Google Scholar 

  37. M. Waldschmidt, Propriétés arithmétiques des fonctions de plusieurs variables (II), in Sém. P. Lelong (Analyse), Lecture Notes in Math., Vol. 538, pp. 108–135, Springer-Verlag, Berlin (1977).

    Google Scholar 

  38. M. Waldschmidt, Nombres transcendants et groupes algébriques, Astérisque No. 69–70 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Demailly, JP. (1993). Monge-Ampère Operators, Lelong Numbers and Intersection Theory. In: Ancona, V., Silva, A. (eds) Complex Analysis and Geometry. The University Series in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9771-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9771-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9773-2

  • Online ISBN: 978-1-4757-9771-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics