Advertisement

Strike-Induced Chemosensory Searching by Rattlesnakes: The Role of Envenomation-Related Chemical Cues in the Post-Strike Environment

  • David Chiszar
  • Charles W. Radcliffe
  • Kent M. Scudder
  • David Duvall

Abstract

Rattlesnakes and many other viperids typically strike and release adult rodent prey (Gans, 1966; O’Connell et al., 1982; Radcliffe et al., 1980), allowing the envenomated rodent to wander up to 600 cm before succumbing to the venom (Estep et al., 1981). The snakes then follow the chemical trail left by the envenomated prey. Although this predatory strategy risks losing the prey, it avoids tissue damage that could result from rodent teeth and claws if the snake attempted to hold the struggling prey after the strike. Even some of the deadliest elapids exhibit this strategy when they prey upon rodents (Chiszar et al., under review; Radcliffe et al., 1982; Shine & Covacevich, 1982), indicating that rodents are formidable prey and that the strike-release-trail system probably appeared very early in the evolution of venomous snakes (see Marx & Rabb, 1965, for a discussion of viperid evolution).

Keywords

Venomous Snake Vomeronasal Organ Garter Snake Tongue Flick Chemical Trail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, G. W., 1977, Modal action patterns, in: “How Animals Communicate,” J. Sebeok, ed., Indiana University Press, Bloomington, Indiana, 98–134.Google Scholar
  2. Baumann, F., 1927, Experimente über den Geruchssinn der Viper, Rev. Suisse Zool., 34: 173–184.Google Scholar
  3. Baumann, F., 1928, Über den Nahrungserwerb der Viper, Rev. Suisse Zool., 35: 233–239.Google Scholar
  4. Baumann, F., 1929, Experimente über den Geruchssinn und den Beuteerwerb der Viper (Vipera aspis L.), Zeitschr. vergl. Physiol., 10: 36–119.CrossRefGoogle Scholar
  5. Bogert, C. M., 1943, Dentitional phenomena in cobras and other elapids with notes on adaptive modifications of fangs, Bull. Amer. Mus. Nat. Hist., 81: 285–360.Google Scholar
  6. Brock, O. G., 1980, Predatory behavior of eastern diamondback rattlesnakes (Crotalus adamanteus): Field enclosure and Y-maze laboratory studies emphasizing prey trailing behavior. Ph.D. dissertation, Florida State University.Google Scholar
  7. Brown, J. H., 1973, “Toxicology and Pharmacology of Venoms from Poisonous Snakes,” C. C. Thomas Publ., Springfield, Illinois.Google Scholar
  8. Burghardt, G. M., 1970, Chemical perception in reptiles, in: “Communication by Chemical Signals,” J. W. Johnston, Jr., D. G. Moulton, and A. Turk, eds., Appleton-Century-Crofts, New York, 241–308.Google Scholar
  9. Chiszar, D., Duvall, D., Scudder, K., and Radcliffe, C. W., 1980, Simultaneous and successive discriminations between envenomated and nonenvenomated mice by rattlesnakes (Crotalus durissus and C. viridis), Behay. Neural Biol., 29: 518–521.CrossRefGoogle Scholar
  10. Chiszar, D. and Radcliffe, C. W., 1977, Absence of prey-chemical preferences in newborn rattlesnakes (Crotalus cerastes, C. enyo, and C. viridis), Behay. Biol., 21: 146–150.CrossRefGoogle Scholar
  11. Chiszar, D., Radcliffe, C. W., O’Connell, B., and Smith, H. M., 1980, Strike-induced chemosensory searching in rattlesnakes (Crotalus enyo) as a function of disturbance prior to presentation of prey. Trans. Kan. Acad., Sci., 83: 230–234.CrossRefGoogle Scholar
  12. Chiszar, D., Radcliffe, C. W., O’Connell, B., and Smith, H. M., 1981, Strike-induced chemosensory searching in rattlesnakes (Crotalus viridis) as a function of disturbance prior to presentation of rodent prey, Psychol. Rec., 31: 57–62.Google Scholar
  13. Chiszar, D., Radcliffe, C. W., O’Connell, B., and Smith, H. M., 1982, Analysis of the behavioral sequence emitted by rattlesnakes during feeding episodes II. Duration of strike-induced chemosensory searching in rattlesnakes (Crotalus viridis C. enyo), Behay. Neural Biol. in press.Google Scholar
  14. Chiszar, D., Radcliffe, C. W., and Scudder, K. M., 1977, Analysis of the behavioral sequence emitted by rattlesnakes during feeding episodes I. Striking and chemosensory searching. Behay. Biol., 21: 418–425.CrossRefGoogle Scholar
  15. Chiszar, D., Radcliffe, C. W., and Smith, H. M., 1978, Chemosensory searching for wounded prey by rattlesnakes is released by striking: A replication report, Herpetol. Rev., 9: 54–56.Google Scholar
  16. Chiszar, D., Radcliffe, C. W., Smith, H. M., and Bashinski, H., 1981, Effect of prolonged food deprivation in response to prey odors by rattlesnakes, Herpetologica, 37: 237–243.Google Scholar
  17. Chiszar, D. and Scudder, K. M., 1980, Chemosensory searching by rattlesnakes during predatory episodes, in: “Chemical Signals: Vertebrates and Aquatic Invertebrates,” D. Müller-Schwarze and R. M. Silverstein, eds., Plenum Press, New York, 125–139.Google Scholar
  18. Chiszar, D., Scudder, K. M., and Knight, L., 1976, Rate of tongue flicking by garter snakes (Thamnophis radix haydeni) and rattlesnakes (Crotalus v. viridis, Sistrurus catenatus tergeminus, and S. c. edwardsi) during prolonged exposure to food odors, Behay. Biol., 18: 273–283.CrossRefGoogle Scholar
  19. Chiszar, D., Simonsen, L., Radcliffe, C. W., and Smith, H. M., 1979, Rate of tongue flicking by cottonmouths (Agkistrodon piscivorus) during prolonged exposure to various food odors, and strike-induced chemosensory searching by the cantil (Agkistrodon bilineatus). Trans. Kan. Acad. Sci., 82: 49–54.Google Scholar
  20. Chiszar, D., Stimac, K., Poole, T., Miller, T., Radcliffe, C. W., and Smith, H. M., under review, Strike-induced chemosensory searching in cobras (Naja naja kaouthia N. mossambica pallida).Google Scholar
  21. Chiszar, D., Taylor, S. V., Radcliffe, C. W., Smith, H. M., and O’Connell, B., 1981, Effects of chemical and visual stimuli upon chemosensory searching by garter snakes and rattlesnakes, J. Herpetol., 15: 415–424.CrossRefGoogle Scholar
  22. Cope, E. D., 1896, The classification of the Ophidia, Trans. Amer. Phil. Soc., 18: 186–219.Google Scholar
  23. Cowles, R. B. and Phelan, R. L., 1958, Olfaction in rattlesnakes, Copeia, 1958: 77–83.CrossRefGoogle Scholar
  24. Dowling, H. G., 1959, Classification of the Serpentes: A critical review, Copeia, 1959: 38–52.CrossRefGoogle Scholar
  25. Dullemeijer, P., 1961, Some remarks on the feeding behavior of rattlesnakes, Kon. Ned. Acad. Wetenschap. Series C, 64: 383–396.Google Scholar
  26. Duvall, D., Chiszar, D., Trupiano, J., and Radcliffe, C. W., 1978, Preference for envenomated rodent prey by rattlesnakes, Bull. Psychon. Sci., 11: 7–8.Google Scholar
  27. Duvall, D., Scudder, K. M., and Chiszar, D., 1980, Rattlesnake predatory behavior: Mediation of prey discrimination, and release of swallowing by odors associated with envenomated mice, Anim. Behay., 28: 674–683.CrossRefGoogle Scholar
  28. Estep, K., Poole, T., Radcliffe, C. W., O’Connell, B., and Chiszar, D., 1981, Distance traveled by mice after envenomation by a rattlesnake (C. viridis), Bull. Psychon. Soc., 18: 108–110.Google Scholar
  29. Gans, C., 1966, The biting behavior of solenoglyph snakes–Its bearing on the pattern of envenomation, Proc. Internat. Symp. Venom. Anim., Sao Paulo, Brazil, Instituto Butantan.Google Scholar
  30. Golan, L., Radcliffe, C. W., Miller, T., O’Connell, B., and Chiszar, D., 1982, Prey trailing by the prairie rattlesnake (Crotalus v. viridis), J. Herpetol. in press.Google Scholar
  31. Gillingham, J. C. and Baker, R. R., 1981, Evidence for scavenging behavior in the western diamondback rattlesnake (Crotalus atrox), Zeit. Tierpsychol.Google Scholar
  32. Gillingham, J. C. and Clark, D. L., 1981, An analysis of prey searching behavior in the western diamondback rattlesnake, Crotalus atrox, Behay. Neural Biol., 32: 235–240.CrossRefGoogle Scholar
  33. Johnson, R. C., 1956, The origin and evolution of the venomous snakes, Evolution, 10: 56–65.CrossRefGoogle Scholar
  34. Klauber, L. M., 1956, “Rattlesnakes - Their Habits, Life Histories, and Influence on Mankind,” Univ. Calif. Press, Berkeley, Cal.Google Scholar
  35. Kubie, J. L., 1977, The role of the vomeronasal organ in garter snake prey trailing and courtship, unpublished Ph.D. dissertation, School of Graduate Studies, Downstate Medical Center, New York.Google Scholar
  36. Marx, H. and Rabb, G. B., 1965, Relationships and zoogeography of the viperine snakes (family Viperidae), Fieldiana Zool., 44: 161–206.Google Scholar
  37. Meredith, M., 1980, The vomeronasal organ and accessory olfactory systems in the hamster, in: “Chemical Signals: Vertebrates and Aquatic Invertebrates,” D. Milller-Schwarze and R. M. Silverstein, eds., Plenum Press, New York, 303–326.Google Scholar
  38. Meredith, M. and Burghardt, G. M., 1978, Electrophysiological studies of the tongue and accessory olfactory bulb in garter snakes, Physiol. Behay., 21: 1001–1008.CrossRefGoogle Scholar
  39. Minton, S. A., 1974, “Venom Diseases,” C. C. Thomas Publ., Springfield, Ill.Google Scholar
  40. Naulleau, G., 1964, Premiéres observations sur le comportement de chasse et de capture chez les vipêres et les couleuvres, La Terre et la Vie, 1: 54–76.Google Scholar
  41. Naulleau, G., 1965, La biologie et le comportement predateur de Vipera aspis au laboratoire et dans la nature, (thése), Bull. Biol. France Belgique, 99: 395–524.Google Scholar
  42. Naulleau, G., 1966, La biologie et le comportement predateur de Vipera aspis au laboratoire et dans la nature, thése, Paris, P. Fanlac.Google Scholar
  43. Naulleau, G., 1967, Le comportement de predation chez Vipera aspis, Rev. Comp. Animal, 2: 41–96.Google Scholar
  44. O’Connell, B., Chiszar, D., and Smith, H. M., 1981, Effect of poststrike disturbance on strike-induced chemosensory searching in the prairie rattlesnake (Crotalus v. viridis), Behay. Neural Biol., 32: 343–349.CrossRefGoogle Scholar
  45. O’Connell, B., Chiszar, D, and Smith, H. M., 1982, Single vs. multiple predatory strikes by prairie rattlesnakes (Crotalus viridis), Bull. Md. Herp. Soc., in press.Google Scholar
  46. Radcliffe, C. W., Chiszar, D., and O’Connell, B., 1980, Effects of prey size on poststrike behavior in rattlesnakes (Crotalus durissus, C. enyo, and C. viridis), Bull. Psychon. Soc., 16: 449–450.Google Scholar
  47. Radcliffe, C. W., Stimac, K., Smith, H. M., and Chiszar, D., 1982, Effects of prey size on poststrike behavior of juvenile red spitting cobras (Naja mossambica pallida) Trans. Kan. Acad. Sci., in press.Google Scholar
  48. Scudder, K. M., 1982, Mechanisms mediating the sequential aspects of predatory episodes in Crotalid snakes, Ph.D. dissertation, University of Colorado, Boulder.Google Scholar
  49. Scudder, K. M., Chiszar, D., and Smith, H. M., The effect of environmental odors on strike-induced chemosensory searching by rattlesnakes, under review.Google Scholar
  50. Scudder, K. M., Poole, T., O’Connell, B., and Chiszar, D., in preparation, Ontogeny of strike-induced chemosensory searching and trailing behavior in neonatal rattlesnakes (Crotalus horridus and C. viridis).Google Scholar
  51. Shine, R. and Covacevich, J., 1982, Ecology of the highly venomous snakes: The Australian genus Oxyuranus (Elapidae), J. Herpetol. in press.Google Scholar
  52. Stimac, K., Radcliffe, C. W., and Chiszar, D., 1982, Prey recognition learning by red spitting cobras, Naja mossambica pallida, Bull. Psychon. Soc., in press.Google Scholar
  53. Weiner, B. J., 1971, “Statistical Principles - Experimental Design,” McGraw-Hill, New York.Google Scholar
  54. Wiedemann, E., 1932, Zur Biologie der Nahrungsaufnahme der Kreuzotter, Vipera berus L., Zool. Anz., 97: 278–286.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • David Chiszar
    • 1
  • Charles W. Radcliffe
    • 1
  • Kent M. Scudder
    • 1
  • David Duvall
    • 2
  1. 1.University of ColoradoBoulderUSA
  2. 2.University of WyomingLaramieUSA

Personalised recommendations