Skip to main content

Comparison of the Effects of BDM on L-Type Ca Channels of Cardiac and Skeletal Muscle

  • Chapter
Calcium and Cellular Metabolism

Abstract

Effects of the compound 2,3 Butanedione monoxime (BDM) on force development have been described in skeletal muscle (Fryer et al., 1988), cardiac muscle (Bergey et al., 1981; West & Stephenson 1989) as well as in smooth muscle (Österman et al., 1993; Watanabe, 1993). It inhibits contraction acting at different levels: on the contractile mechanism as was shown by Horiuti et al. (1988) and Österman et al. (1993) and on the excitation-contraction coupling process (Hui & Maylie, 1991; De Armas et al., 1993; Li et al., 1985). In addition to these effects on contractility the drug reduces Ca“ current through L-type Ca2+ channels in cardiac (Coulombe et al., 1990; Chapman, 1992; Ferreira et al., 1993), skeletal muscle (Fryer et al., 1988) and smooth muscle (Lang & Paul, 1991). This reduction obeys to an enhanced voltage dependent inactivation of the channel (Chapman 1992, 1993; Ferreira et al., 1993). Since BDM is a chemical phosphatase, member of a group of oximes with the ability to reactivate cholinesterase after exposure to organo-phosphorous compounds (Wilson & Grinsberg, 1955), it has been suggested that dephosphorylation is the mechanism of action of the drug. Several experimental evidences recently provided are in line with this hypothesis (Chapman, 1993a; Chapman, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almers, W., Fink, R. & Palade, P.T. (1981) Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. Journal of Physiology 312, 177–207.

    PubMed  CAS  Google Scholar 

  • Allen, T.J.A. & Chapman, R.A. (1995). The effect of a chemical phosphatase on single calcium channels and the inactivation of whole cell calcium current from isolated guinea-pig ventricular myocytes. Pflügers Arch. 430, 68–80.

    Article  PubMed  CAS  Google Scholar 

  • Arreola, J., Calvo, J., Garcia, M.C. & Sanchez, J.A. (1987) Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. Journal of Physiology 393. 307–330

    PubMed  CAS  Google Scholar 

  • Bean, B. & Rios, E. (1989). Non-linear charge movement in the membranes of mammalian cardiac ventricular cells. Components from Na and Ca channel gating. Journal of General Physiology 94, 65–93.

    Google Scholar 

  • Bergey, J., Reiser, J., Wiggins J. & Freeman, A. (1981). Oximes: enzymatic slow channel antagonists in canine cardiac purkinje fibres? European Journal of Pharmacology 71, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Brum,G. & Rios, E. (1987) lntramembrane charge movement in frog skeletal muscle fibers, properties of charge 2. Journal of Physiology 387, 489–517

    Google Scholar 

  • Brum,G., Gonzalez,S., Ferreira,G., Maggi, M. & Santi, C. (1990) Effects of adrenaline on calcium release in single fibers of frog skeletal muscle. Biophys.J. 57:342a,.

    Google Scholar 

  • Chapman, R. (1992) The action of 2,3-butanedione monoxime (BDM), pyridine-2-aldoxime (norPAM) and pyridine-2-aldoxime methochloride ( PAM) on the inactivation of the L-type calcium current in isolated guinea-pig ventricular myocytes. ( Abstract) Journal of Physiology 452, 196P.

    Google Scholar 

  • Chapman, R. (1993a). The effect of oximes on the dihydropyridine-sensitive Ca current of isolated guinea-pig ventricular myocytes. Pflügers Archives 422, 325–331.

    Article  CAS  Google Scholar 

  • Chapman, R.A. (1995). The introduction of trypsin into the sarcoplasm of isolated guinea-pig ventricular myocytes eliminates the inhibition of the L-type Ca2+ current caused by BDM. (Abstract) Journal of Physiology 483, 19 P.

    Google Scholar 

  • Coulombe, A; Lefevre, I., Deroubaix, E., Thuringer, D. & Coraboeuf, E. (1990). Effect of 2,3-Butanedione 2Monoxime on slow inward and transient outward currents in rat ventricular myocytes. Journal of Molecular and Cellular Cardiology 22, 921–932.

    Article  PubMed  CAS  Google Scholar 

  • De Armas, R., Gonzalez, S., Pizarro, G. & Brum, G. (1993) BDM suppresses calcium release and Q Ana in skeletal muscle fibers. (Abstract) Biophysical Journal 64, 240A.

    Google Scholar 

  • Ferreira, G., Maggi, M., Pizarro, G. & Brum, G. (1993) BDM enhances voltage dependent inactivation of L-type calcium channel in heart. (Abstract) Biophysical Journal 64, A203.

    Google Scholar 

  • Ferreira, G., Artigas, P., Pizarro, G., & Brum, G. (1997) Butaneidione monoxime promotes voltage-dependent inactivation of L-type calcium channels in heart. Effects on gating currents. Journal of Molecular and Cellular Cardiology 29, 777–787.

    Google Scholar 

  • Fryer, M., Neering, I. & Stephenson, D. (1988). Effects of2,3-butanedione monoxime on the contractile activation properties of fast-and slow-twitch rat muscle fibres. Journal of Physiology 407, 53–75.

    PubMed  CAS  Google Scholar 

  • Hadley, R., & Lederer, W. (1988). Intramembrane charge movement in guinea-pig and rat ventricular myocytes. Journal of Physiology 415, 601–624.

    Google Scholar 

  • Hadley, R., & Lederer, W. (199I). Properties of L-type calcium channel gating current in isolated guinea-pig ventricular myocytes. Journal of General Physiology 98, 265–285.

    Google Scholar 

  • Hammill, O., Marty, A., Necher, E., Sakmann, B., & Sigworth, F. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archives 391, 85–100.

    Article  Google Scholar 

  • Hescheler, J., Mieskes, G., Ruegg, J., Takai, A., & Trautwein, W. (1988). Effects of a protein phosphatase inhibitor, okadaic acid, on membrane currents of isolated guinea-pig cardiac myocytes. Pflügers Archives 412, 248–252.

    Article  CAS  Google Scholar 

  • Hess, P., & Tsien, R.W. (1984) Mechanism of permeation through calcium channels. Nature 309, 453–456

    Article  PubMed  CAS  Google Scholar 

  • Horiuti, K., Higuchi, H., Umazume, Y., Konishi, M., Okazaki, O. & Kurihara, S. (1988). Mechanism of action of 2,3-butanedione monoxime on contraction of frog skeletal muscle fibres. Journal of Muscle Research and Cell Motility 9, 156–164.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A.L., & Huxley, A.F. (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500–544

    PubMed  CAS  Google Scholar 

  • Hui, C., & Maybe, J. (1991). Multiple actions of 2,3-butanedione monoxime on contractile activation in frog twitch fibres. Journal of Physiology 442, 527–549.

    PubMed  CAS  Google Scholar 

  • Kass, R., & Sanguinetti, C. (1984). Inactivation of calcium channel current in the calf cardiac Purkinje fiber. Journal of General Physiology 84, 705–726.

    Article  PubMed  CAS  Google Scholar 

  • Kovacs, L., Rios, E., & Schneider, M.F. (1983) Measurement and modification of free calcium transients in frog skeletal muscle fibers by a metallochromic indicator dye. Journal of Physiology 343, 161–196.

    PubMed  CAS  Google Scholar 

  • Lang, R., & Paul, R. (1991). Effects of 2,3-butanedione monoxime on whole-cell Ca“ channel currents in single cells of the guinea-pig taenia cacci. Journal of Physiology 433, 1–24.

    PubMed  CAS  Google Scholar 

  • Li, T., Sperelakis, N., Teneick, R., & Solaro, J. (1985). Effect of diacetyl monoxime on cardiac excitation-contraction coupling. Journal of Pharmacology and Experimental Therapeutics. 232, 688–695.

    PubMed  CAS  Google Scholar 

  • Mitra, R., & Morad, M. (1985). A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. American Journal of Physiology 249, 1056–1060.

    Google Scholar 

  • Osterman, A., Amer, A., & Malmqvist, U. (1993). Effects of 2,3-butanedione monoxime on activation of contraction and crossbridge kinetics in intact and chemically skinned smooth muscle fibres from guinea-pig taenia coli. Journal of Muscle Research and Cell Motility 14, 186–194.

    Article  PubMed  CAS  Google Scholar 

  • Pizarro, G., Csernoch, L., Uribe, Y., Rodriguez, M., & Rios, E. (1991) The relantionship between Qy and Ca release from the sarcoplasmic reticulum in skeletal muscle. Journal of General Physiology 97, 913–947.

    Article  PubMed  CAS  Google Scholar 

  • Rios, E., & Brum, G. (1987) Involvement ofdihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Rios, E., & Pizarro, G. (1991). Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiological Reviews 71, 849–908.

    PubMed  CAS  Google Scholar 

  • Schneider, M.F., & Chandler, W.K. (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242, 244–246.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, L.M., McClesky. E.W., & Almers, W. (1985) Dihydropyridine receptors in muscle are voltage dependent but most are not functional calcium channels. Nature 314, 747–751.

    PubMed  CAS  Google Scholar 

  • Shirokov, R., Levis, R., Shirokova, N. & Rios, E. (1992). Two classes of gating current from L-type Ca channels in guinea pig ventricular myocytes. Journal of General Physiology 99, 863–895.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hi-rose, T., & Numa, S. (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318.

    Article  PubMed  CAS  Google Scholar 

  • Trautwein, W., & Hescheler, J. (1990). Regulation of cardiac L-type calcium current by phosphorylation and G proteins. Annual Reviews of Physiology 52, 257–274.

    Article  CAS  Google Scholar 

  • Watanabe, M. (1993). Effects of 2,3-butanedione monoxime on smooth-muscle contraction of guinea-pig portal vein. Pflügers Archives 425, 462–468.

    Article  CAS  Google Scholar 

  • West J., & Stephenson, D. (1989). Contractile activation and the effects of 2,3-butanedione monoxime (BDM) in skinned cardiac preparations from normal and dystrophic mice (129/ReJ). Pflügers Archives 413, 546–552.

    Article  CAS  Google Scholar 

  • Wilson, 1., & Ginsberg, S. (1955). A powerful reactivator of alkyl-phosphate inhibited cholinesterase. Biochemica et Biophysica Acta 18, 168–175.

    Article  Google Scholar 

  • Yakel, J. (1992). Inactivation of the Ba“ current in dissociated Helix neurons: voltage dependence and the role of phosphorylation. Pflügers Archives 420, 470–478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferreira, G., Artigas, P., De Armas, R., Pizarro, G., Brum, G. (1997). Comparison of the Effects of BDM on L-Type Ca Channels of Cardiac and Skeletal Muscle. In: Sotelo, J.R., Benech, J.C. (eds) Calcium and Cellular Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9555-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9555-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9557-8

  • Online ISBN: 978-1-4757-9555-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics