Advertisement

Photonics Applied to Phased Array Antennas: Work Done at Université Laval

  • M. Têtu
  • M. Chamberland
  • P. Tremblay
  • C. Beaulieu
  • S. Paquet
  • A. Fekecs
  • G. Lessard
  • M.-L. Charès
  • C. Laperle

Abstract

Space-borne phased array antennas may benefit from the use of optical communications technology and photonic devices to reduce their weight and their power consumption, and also from signal handling by innovative means.1–3 At Université Laval, we have undertaken a research program to study some promising avenues. We present here a summary of our latest results concerning the microwave signal transport, distribution, processing and generation by optical means.

Keywords

Power Spectral Density Semiconductor Laser Microwave Signal Microwave Oscillator Slave Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Goldberg, R. D. Esman, and K. J. Williams, Optical techniques for microwave generation, transmission, and control, in: “IEEE Microwave Theory Techn. Symp. Dig.,” IEEE, Piscataway (1990).Google Scholar
  2. 2.
    A. J. Seeds, I. D. Blanchrlower, and N. J. Gomes, New developments in optical control techniques for phased array radar, in: “IEEE Microwave Theory Techn. Symp. Dig.,” IEEE, Piscataway (1988).Google Scholar
  3. 3.
    A. J. Seeds, W. I. McMillan, C. R. Pescod, M. J. Wale, and W. S. Birkmayer, Optical control of phased array antennas: a European perspective, in: “IEEE Microwave Theory Techn. Symp. Dig.,” IEEE, Piscataway (1990).Google Scholar
  4. 4.
    M. Chamberland, M. Têtu, and P. Tremblay, Spectral characterization of microwave signals generated by the heterodyne of injection-locked semiconductor lasers, in: “Optoelectronic Signal Processing for Phased Array Antennas IV, Proc. 2155,” , B. M. Hendrickson, ed., SPIE, Bellinghan (1994).Google Scholar
  5. 5.
    L. Goldberg, H. F. Taylor, and J. F. Weller, Microwave signal generation with injection-locked laser diodes, Electron. Lett. 19:491 (1983).CrossRefGoogle Scholar
  6. 6.
    C. Beaulieu, M. Chamberland, M. Têtu, and P. Tremblay, Stability measurements of an optically injection-locked microwave oscillator, in: “Frequency-Stabilized Lasers and their Applications, Proc. 1837,” Y. C. Chung, ed., SPIE, Bellinghan (1993).Google Scholar
  7. 7.
    R. Adler, A study of locking phenomena in oscillators, Proc. IRE 34:351 (1946).CrossRefGoogle Scholar
  8. 8.
    D. J. Sturzebecher, X. Zhou, X. Zhang, and A. S. Daryoush, Design of oscillators for optically fed MMW phased array, in: “IEEE Microwave Theory Techn. Symp. Dig.,” IEEE, Piscataway (1992).Google Scholar
  9. 9.
    M. Kawachi, Silica waveguides on silicon and their application to integrated-optic components, Opt. Quantum Electron. 22:391 (1990).CrossRefGoogle Scholar
  10. 10.
    S. Paquet, F. Chénard, Z. Jakubczyk, M Bélanger, M. Têtu, C. Bélisle, Optical delay lines in high-silica (S1O2/SÍ) waveguides, in: “International Conference on Applications of Photonic Technology,” G. A. Lampropoulos, ed., Plenum, New York (1994).Google Scholar
  11. 11.
    M. J. O’Mahony, Semiconductor laser optical amplifiers for use in future fiber systems, J. Lightwave Technol. 6:531 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • M. Têtu
    • 1
  • M. Chamberland
    • 1
  • P. Tremblay
    • 1
  • C. Beaulieu
    • 1
  • S. Paquet
    • 1
  • A. Fekecs
    • 1
  • G. Lessard
    • 1
  • M.-L. Charès
    • 1
  • C. Laperle
    • 1
  1. 1.Centre d’optique, photonique et laser, Département de génie électriqueUniversité LavalQuébecCanada

Personalised recommendations