Skip to main content

Assimilation of Satellite Data in Regional Air Quality Models

  • Chapter
Air Pollution Modeling and Its Application XII

Abstract

In regional-scale air-pollution models probably no other source of uncertainty ranks higher than the current ability to specify clouds and soil moisture. Because modeled clouds are highly parameterized, the ability of models to predict the magnitude and spatial distribution of radiative characteristics is highly suspect and subject to large error. While considerable advances have been made in the assimilation of winds and temperatures into regional models (Stauffer and Seaman, 1990), the poor representation of cloud fields from point measurements at National Weather Service stations and the almost total absence of observations of surface moisture availability has made assimilation of these variables difficult if not impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry. Consider the following points relative to these variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atwater, M. A. and P. S. Brown, Jr., 1974, Numerical calculation of the latitudinal variation of solar radiation for an atmosphere of varying opacity, J. Appl. Meteor., 13:289–297.

    Google Scholar 

  • Carlson, T. N., 1986, Regional scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sensing Rev., 1:197–246.

    Article  Google Scholar 

  • Carlson, T. N., J. K. Dodd, S. G. Benjamin, and J. N. Cooper, 1981, Satellite estimation of the surface energy balance, moisture availability and thermal inertia, J. Appl. Meteor., 20:67–87.

    Article  Google Scholar 

  • Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987, A three-dimensional eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res., 92: D12, 14681–14700.

    Article  CAS  Google Scholar 

  • Deardorff, J., 1974, Three-dimensional numerical study of the height and mean structure of the planetary boundary layer, Bound-layer Meteor. 15:1241–1251.

    Google Scholar 

  • Diak, G. R. and C. Gautier, 1983, Improvements to a simple physical model for estimating insolation from GOES data, J. Appl. Meteor., 22:505–508.

    Article  Google Scholar 

  • Dunker, A. M., 1980, The response of an atmospheric re/action-transport model to changes in input function, Atmos. Environ., 14:671–679.

    Article  CAS  Google Scholar 

  • Gautier, C, G. Diak, and S. Masse, 1980, A simple physical model to estimate incident solar radiation at the surface from GOES satellite data, J. Appl. Meteor., 19:1005–1012.

    Article  Google Scholar 

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994, A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398+STR, Nationial Center for Atmospheric Research, Boulder, Colorado.

    Google Scholar 

  • Guillory, A. R., G. J. Jedlovec, and H. E. Fuelberg, 1993, A technique for deriving column-integrated water content using VAS split-window data, J. Appl. Meteor., 32:1226–1241.

    Article  Google Scholar 

  • Kondratyev, K. Y., 1969, Radiation in the Atmosphere., Academic Press, New York.

    Google Scholar 

  • McDonald, J. E., 1960, Direct absorption of solar radiation by atmospheric water vapor, J. of Meteor., 17:319–328.

    Article  Google Scholar 

  • McNider, R. T., A. J. Song, D. M. Casey, P. J. Wetzel, W. L. Crosson, and R. M. Rabin, 1994, Toward a dynamic-thermodynamic assimilation of satellite surface temperature in numerical atmospheric models, Mon. Wea. Rev., 12:2784–2803.

    Article  Google Scholar 

  • McNider, R. T., J. A. Song, and S. Q. Kidder, 1995, Assimilation of GOES-derived solar insolation into a mesoscale model for studies of cloud shading effects, Int. J. Remote Sensing, 16:2207–2231.

    Article  Google Scholar 

  • National Renewable Energy Laboratory, 1992, National Solar Radiation Data Base User’s Manual (1961–1990), Golden, Colorado.

    Google Scholar 

  • Pielke R. A., W. R. Cotton, R. L. Walko, C. J. Tremback, W. A. Lyons, L. D. Grasso, M. E. Nicholls, M. D. Moran, D. A. Wesley, T. J. Lee, and J. H. Copeland, 1992, A comprehenseive meteorological modeling system—RAMS, Meteor. Atmos. Phys., 49:69–91.

    Article  Google Scholar 

  • Pleim, J. E. and A. Xiu, 1995, Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J. Appl. Meteor., 34:16–32.

    Article  Google Scholar 

  • Raphael, C, and Hay, J. E., 1984, An assessment of models which use satellite dta to estimate solar irradiance at the earth’s surface, J. Climate and Appl. Meteor., 23:832–844.

    Article  Google Scholar 

  • Roselle, S. J., A. F. Hanna, Y. Lu, J. C. Jang, K. L. Schere, J. E. Pleim, 1995, Refined photolysis rates for advanced air quality modeling systems, in Proceedings of the A&WMA Conference on the Applications of Air Pollution Meteorology.

    Google Scholar 

  • Ruggaber, A., R. Dlugi, and T. Nakajima, 1994, Modelling radiation quantities and photolysis frequencies in the troposphere, J. Atmos. Chem., 18:171–210.

    Article  CAS  Google Scholar 

  • Seinfeld, J. H., 1988, Ozone Air Quality Models: A critical review, J. Air Poll. Control Assoc, 38:616–645.

    CAS  Google Scholar 

  • Splitt, M. E. and D. L. Sisterson, 1995, Site Scientific Mission Plan for the Southern Great Plains CART Site: July–December 1995, ARM-95-002, Argonne National Laboratory, Argonne, Illinois.

    Google Scholar 

  • Stauffer, D. R. and N. L. Seaman, 1990, Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data, Mon. Wea. Rev., 118:1250–1277.

    Article  Google Scholar 

  • Tarpley, J. D., 1979, Estimating incident solar radiation at the surface from geostationary satellite data, J. of Appl. Meteor., 18:1172–1181.

    Article  Google Scholar 

  • Tingey, D. T., M. Manning, L. C. Grothaus, and W. F. Burns, 1979, The influence of light and temperature on isoprene emission rates from live oak, Physiol Plant, 47:112–118.

    Article  CAS  Google Scholar 

  • Wetzel, P. J., 1984, Determining soil moisture from geosynchronous satellite infrared data: A feasibility study, J. Climate Appl. Meteor., 23:375–391.

    Article  Google Scholar 

  • Zimmerman, P. R., J. P. Greenberg, and C. E. Westberg, 1988, Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer, J. Geophys. Res., 93:1407–1416.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

McNider, R.T., Norris, W.B., Casey, D.M., Pleim, J.E., Roselle, S.J., Lapenta, W.M. (1998). Assimilation of Satellite Data in Regional Air Quality Models. In: Gryning, SE., Chaumerliac, N. (eds) Air Pollution Modeling and Its Application XII. NATO • Challenges of Modern Society, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9128-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9128-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9130-3

  • Online ISBN: 978-1-4757-9128-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics