Skip to main content

Resonance Raman Scattering in Short Period GaAs-AlAs Superlattices

  • Chapter
Spectroscopy of Semiconductor Microstructures

Part of the book series: NATO ASI Series ((NSSB,volume 206))

  • 201 Accesses

Abstract

New semiconductor growth techniques such as molecular beam epitaxy provide a powerful tool for band structure manipulation.1 The first optical experiments in the early seventies demonstrated the possibility of fabricating structures whose band gaps differ from those of the bulk parent materials due to quantum confinement effects.2 Moreover, it soon became apparent that even more dramatic effects could be expected, such as the appearance of new direct optical transitions produced by the folding of the “old” Brillouin zone (BZ) under the superlattice periodicity.3 This perspective is particularly exciting in the case of indirect gap materials, which might form direct gap superlattices. Recently, Pearsall et al. reported the observation of superlattice-induced optical transitions in Si-Ge structures.4 These transitions have small oscillator strengths, a carryover of their forbidden nature in the bulk which implies that they can only be observed in superlattices whose periods do not exceed a few atomic layers. This poses a serious material problem, because the superlattice period becomes of the order of the interface roughness. In the specific case of Si-Ge structures, the growth difficulty is compounded by the large lattice mismatch, the different optimal growth temperatures for Si and Ge, and the interchangeability of the two group-IV atoms in the crystal lattice. It is therefore not surprising that efforts in this area have concentrated on GaAs-AlAs structures, whose epitaxial growth is much simpler. Several groups have reported the observation, in very thin GaAs-AlAs superlattices, of electronic structure features qualitatively different from those found in thicker superlattices: non-monotonical thickness-dependence of the E0-band gap,5 new direct optical transitions,6 Γ-x mixing effects,7 etc. In this paper, we study the problem of the superlattice-induced direct transitions and their oscillator strength using resonance Raman scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.Y. Cho, in Molecular Beam Epitaxy and Heterostructures ed. by L.L. Chang and K. Ploog, Nijhoft, Dordretch, 1985, p. 191.

    Google Scholar 

  2. R. Dingle, W. Wiegmann, and C.H. Henry, Phys. Rev. Lett. 33, 827 (1974).

    Article  ADS  Google Scholar 

  3. U. Gnutzmann and K. Clauseker, Appl. Phys. 3, 9 (1974).

    Article  ADS  Google Scholar 

  4. T.P. Pearsall, J. Bevk, L.C. Feldman, J.M. Bonar, J.P. Mannaerts, and A. Ourmazd, Phys. Rev. Lett. 58, 729 (1987).

    Article  ADS  Google Scholar 

  5. A. Ishibashi, Y. Mori, M. Itabashi and N. Watanabe, J. Appl. Phys. 58, 2691 (1985).

    Article  ADS  Google Scholar 

  6. E. Finkman, M.D. Sturge, M.-H. Meynadier, R.E. Nahory, M.C. Tamargo, D.M. Hwang, and C.C. Chang, J. Lumin. 39, 57 (1987).

    Article  Google Scholar 

  7. M.-H. Meynadier, R.E. Nahory, J.M. Worlock, M.C. Tamargo, J.L. de Miguel, and M.D. Sturge, Phys. Rev. Lett. 60, 1338 (1988).

    Article  ADS  Google Scholar 

  8. M. Cardona, Surf. Sci. 37, 100 (1973).

    Article  ADS  Google Scholar 

  9. P. Manuel, G.A. Sai-Halasz, L.L. Chang, C.-A. Chang, and L. Esaki, Phys. Rev. Lett. 37 1701 (1976).

    Article  ADS  Google Scholar 

  10. J.E. Zucker, A. Pinczuk, D.S. Chemla, A.C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 51, 1293 (1983).

    Article  ADS  Google Scholar 

  11. J.E. Zucker, A. Pinczuk, D.S. Chemla, A.C. Gossard, and W. Wiegmann, Phys. Rev. B 29, 7065 (1984).

    Article  ADS  Google Scholar 

  12. M. Cardona, T. Suemoto, N.E. Christensen, T. Isu, and K. Ploog, Phys. Rev. B 36, 5906 (1987).

    Article  ADS  Google Scholar 

  13. D.E. Aspnes, S.M. Kelso, R.A. Logan, and R. Bhat, J. Appl. Phys. 60, 754 (1986).

    Article  ADS  Google Scholar 

  14. S.-H. Wei and A. Zunger, J. Appl. Phys. 63, 5794 (1988).

    Article  ADS  Google Scholar 

  15. Y.-T. Lu and L.J. Sham, unpublished.

    Google Scholar 

  16. M. Hybertsen, private communication.

    Google Scholar 

  17. L.J. Sham, Superlattices and Microstructures 5, 335 (1989).

    Article  ADS  Google Scholar 

  18. J.N. Schulman and T.C. McGill, Phys. Rev. B 19, 6341 (1979).

    Article  ADS  Google Scholar 

  19. J.N. Schulman and Y.-C. Chang, Phys. Rev. B 31, 2056 (1985).

    Article  ADS  Google Scholar 

  20. J. Ihm, Appl. Phys. Lett. 50, 1068 (1987).

    Google Scholar 

  21. W. Andreoni and R. Car, Phys. Rev. B 21, 3334 (1980).

    Article  ADS  Google Scholar 

  22. T. Nakayama and H. Kamimura, J. Phys. Soc. Jpn. 54, 4726 (1986).

    Article  ADS  Google Scholar 

  23. S.-F. Ren, H. Chu, and Y.-C. Chang, Superlattices and Microstructures 4, 303 (1988).

    Article  ADS  Google Scholar 

  24. K.J. Moore, G. Duggan, P. Dawson, and C.T. Foxon, Phys. Rev. B 38, 5535 (1988).

    Article  ADS  Google Scholar 

  25. E. Caruthers and P.J. Lin-Chun, Phys. Rev. B 17, 2705 (1978).

    Article  ADS  Google Scholar 

  26. J.-B. Xia, Phys. Rev. B 38, 8358 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Menéndez, J. et al. (1989). Resonance Raman Scattering in Short Period GaAs-AlAs Superlattices. In: Fasol, G., Fasolino, A., Lugli, P. (eds) Spectroscopy of Semiconductor Microstructures. NATO ASI Series, vol 206. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6565-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6565-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6567-0

  • Online ISBN: 978-1-4757-6565-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics