Skip to main content

Translational Regulation of Masked Maternal mRNAs in Early Development

  • Chapter
RNA Binding Proteins

Part of the book series: Endocrine Updates ((ENDO,volume 16))

  • 238 Accesses

Abstract

Gene expression in early development, at a time when transcription is silent, is essentially regulated at the level of protein synthesis in a wide variety of organisms. Overall, there is modest activation of the translational machinery at the time when the oocytes or eggs resume meiosis. More importantly, in every case examined in detail, specific sub-sets of mRNA are recruited onto polysomes from a masked form associated with proteins (mRNP). In contrast to ‘house-keeping’ mRNAs such as actin, tubulin and ribosomal protein mRNAs, which are actively translated in immature oocytes, mRNAs encoding proteins required for entry and progression through the cell cycle (including cyclins, c-mos and ribonucleotide reductase) are translationally inert until oocytes are induced to undergo meiotic maturation or fertilization, when their products are required (1,2). The control of mRNAs encoding cell cycle regulatory proteins in early development has been extensively characterized in lower and higher eukaryotes in the last decade; this research has uncovered one of the best-understood mRNA-specific translational regulators, cytoplasmic polyadenylation element binding protein (CPEB), the major subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Standart, N. (1992). Masking and unmasking of maternal mRNA. Semin. Dev. Biol. 3, 367–379.

    Article  Google Scholar 

  2. Wickens, M., Goodwin, E., Kimble, J., Strickland, S., and Hentze, M., Translational control of developmental decisions, in Translational control of gene expression, N. Sonenberg, J. Hershey, and M. Mathews, Editors. 2000, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York. p. 295–370.

    Google Scholar 

  3. Goodwin, E.R. and Evans, T.C. (1997). Translational control of development in C. elegans. Seminars in Cell and Dev. Biol. 8, 551–559.

    CAS  Google Scholar 

  4. St Johnston, D. (1995). The intracellular localization of messenger RNAs. Cell. 81, 161–170.

    Article  Google Scholar 

  5. Rouault, T.A. and Harford, J.B., Translational control of ferritin synthesis., in Translatonal control of gene expression, N. Sonenberg, J. Hershey, and M. Mathews, Editors. 2000, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York. p. 655–670.

    Google Scholar 

  6. Ostareck-Lederer, A., Ostareck, D.H., and Hentze, M.W. (1998). Cytoplasmic regulatory functions of the KH-domain proteins hnRNP K and E 1/E2. Trends Biochem. Sci. 23, 409–411.

    Article  CAS  Google Scholar 

  7. Meyuhas, O. and Hornstein, E., Translational control of TOP mRNAs., in Translational control of gene expression, N. Sonenberg, J. Hershey, and M. Mathews, Editors. 2000, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York. p. 671–694.

    Google Scholar 

  8. Wu, L., Wells, D., Tay, J., Mendis, D., Abbott, M.-A., Barnitt, A., Quinlan, E., Heynen, A., Fallon, J.R., and Richter, J.D. (1998). CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of a-CaMKII mRNA at synapses. Neuron. 21, 1129–1139.

    Article  PubMed  CAS  Google Scholar 

  9. Murray, M.T., Krohne, G., and Franke, W.W. (1991). Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos. J. Cell Biol. 112, 1–11.

    Article  PubMed  CAS  Google Scholar 

  10. Murray, M.T., Schiller, D.L., and Franke, W.W. (1992). Sequence analysis of cytoplasmic mRNA-binding proteins of Xenopus oocytes identifies a family of RNA-binding proteins. Proc. Natl. Acad. Sci. USA. 89, 11–15.

    Article  PubMed  CAS  Google Scholar 

  11. Bouvet, P. and Wolffe, A.P. (1994). A role for transcription and FRGY2 in masking maternal mRNA within Xenopus oocytes. Cell. 77, 931–941.

    Article  PubMed  CAS  Google Scholar 

  12. Braddock, M., Muckenthaler, M., White, M.R.H., Thorburn, A.M., Sommerville, J., Kingsman, A.J., and Kingsman, S.M. (1994). Intron-less RNA injected into the nucleus of Xenopus oocytes accesses a regulated translation control pathway. Nucl. Acids Res. 22, 5255–5264.

    Article  PubMed  CAS  Google Scholar 

  13. Davydova, E.K., Evdokimova, V.M., Ovchinnikov, L.P., and Hershey, J.W. (1997). Overexpression in COS cells of p50, the major core protein associated with mRNA, results in translation inhibition. Nucl. Acids Res. 25, 2911–2916.

    Article  PubMed  CAS  Google Scholar 

  14. Davies, H.G., Giorgini, F., Fajardo, M.A., and Braun, R.E. (2000). A sequence-specific RNA binding complex expressed in murine germ cells contains MSY2 and MSY4. Dev. Biol. 221, 87–100.

    Article  PubMed  CAS  Google Scholar 

  15. Standart, N. and Jackson, R. (1994). Y the message is masked ? Curr. Biol. 4, 939–941.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto, K. and Wolfe, A.P. (1998). Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends Cell Biol. 8, 318–323.

    Article  PubMed  CAS  Google Scholar 

  17. Sommerville, J. and Ladomery, M. (1996). Masking of mRNA by Y-box proteins. FASEB J. 10, 435–43.

    PubMed  CAS  Google Scholar 

  18. Standart, N., Dale, M., Stewart, E., and Hunt, T. (1990). Maternal mRNA from clam oocytes can be specifically unmasked in vitro by antisense RNA complementary to the 3’-untranslated region. Genes Dev. 4, 2157–2168.

    Article  PubMed  CAS  Google Scholar 

  19. Walker, J., Dale, M., and Standart, N. (1996). Unmasking mRNA in clam oocytes: Role of phosphorylation of a 3’ UTR masking element-binding protein at fertilization. Dev. Biol. 173, 292–305.

    Article  PubMed  CAS  Google Scholar 

  20. Katsu, Y., Minshall, N., Nagahama, Y., and Standart, N. (1999). Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: Implications for dual and independent roles of MAP and cdc2 kinases. Dev. Biol. 209, 186–199.

    Article  PubMed  CAS  Google Scholar 

  21. Richter, J.D., Influence of polyadenylation-induced translation on metazoan development and neuronal synaptic function., in Translational control of gene expression, N. Sonenberg, J. Hershey, and M. Mathews, Editors. 2000, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York. p. 785–806.

    Google Scholar 

  22. Rosenthal, E.T., Tansey, T.R., and Ruderman, J.V. (1983). Sequence-specific adenylations and deadenylations accompany changes in the translation of maternal messenger RNA after fertilization of Spisula oocytes. J. Mol. Biol. 166, 309–327.

    Article  PubMed  CAS  Google Scholar 

  23. Sheets, M., Fox, C., Hunt, T., Vande Woude, G., and Wickens, M. (1994): The 3’untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev. 8, 926–938.

    Article  PubMed  CAS  Google Scholar 

  24. Simon, R., Tassan, J.-P., and Richter, J.D. (1992). Translational control by poly(A) elongation during Xenopus development: Differential repression and enhancement by a novel cytoplasmic polyadenylation element. Genes Dev. 6, 2580–2591.

    Article  PubMed  CAS  Google Scholar 

  25. Simon, R. and Richter, J. (1994). Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins. Mol. Cell. Biol. 14, 7867–7875.

    PubMed  CAS  Google Scholar 

  26. de Moor, C.H. and Richter, J., D. (1997). The mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell Biol. 17, 6419–6426.

    PubMed  Google Scholar 

  27. Varnum, S.M. and Wormington, W.M. (1990). Deadenylation of maternal mRNAs during Xenopus oocyte maturation does not require specific cis-sequences: a default mechanism for translational control. Genes Dev. 4, 2278–2286.

    Article  PubMed  CAS  Google Scholar 

  28. Fox, C.A. and Wickens, M. (1990). Poly(A) removal during oocyte maturation: a default reaction selectively prevented by specific sequences in the 3’-UTR of certain maternal mRNAs. Genes Dev. 4, 2287–2298.

    Article  PubMed  CAS  Google Scholar 

  29. McGrew, L.L., Dworkin-Rastl, E., Dworkin, M.B., and Richter, J.D. (1989). Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3, 803–815.

    Article  PubMed  CAS  Google Scholar 

  30. Fox, C.A., Sheets, M.D., and Wickens, M.P. (1989). Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3, 2151–2162.

    Article  PubMed  CAS  Google Scholar 

  31. Ballantyne, S., Daniel, J., D. L., and Wickens, M. (1997). A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell. 8, 1633–1648.

    CAS  Google Scholar 

  32. de Moor, C. and Richter, J.D. (1999). Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 18, 2294–2303.

    Article  PubMed  Google Scholar 

  33. Barkoff, A.F., Dickson, K.S., Gray, N.K., and Wickens, M. (2000). Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev. Biol. 220, 97–109.

    Article  PubMed  CAS  Google Scholar 

  34. Ralle, T., Gremmels, D., and Stick, R. (1999). Translational control of nuclear lamin B1 mRNA during oogenesis and early development of Xenopus. Mech. Dev. 84, 89–101.

    Article  PubMed  CAS  Google Scholar 

  35. Charlesworth, A., Welk, J., and MacNicol, A.M. (2000). The temporal control of weel mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3’-untranslated region. Dev. Biol. 227, 706–719.

    Article  PubMed  CAS  Google Scholar 

  36. Stutz, A., Conne, B., Huarte, J., Gubler, P., VSlkel, V., Flandin, P., and Vassalli, J.D. (1998). Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev. 12, 2535–2548.

    Article  PubMed  CAS  Google Scholar 

  37. Tay, J., Hodgman, R., and Richter, J. (2000). The control of cyclin B 1 mRNA translation during mouse oocyte maturation. Dev. Biol. 221, 1–9.

    Article  PubMed  CAS  Google Scholar 

  38. Minshall, N., Walker, J., Dale, M., and Standart, N. (1999). Dual roles of p82, the clam CPEB homolog, in cytoplasmic polyadenylation and translational masking. RIVA. 5, 27–38.

    CAS  Google Scholar 

  39. Sallés, F.J., Lieberfarb, M.E., Wreden, C., Gergen, J.P., and Strickland, S. (1994). Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science. 266, 1996–1999.

    Article  PubMed  Google Scholar 

  40. Sheets, M.D., Wu, M., and Wickens, M. (1995). Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature. 374, 511–516.

    Article  PubMed  CAS  Google Scholar 

  41. Gebauer, F., Xu, W., Cooper, G., and Richter, J. (1994). Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 13, 5712–5720.

    PubMed  CAS  Google Scholar 

  42. Hake, L.E. and Richter, J.D. (1994). CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell. 79, 617–627.

    Article  PubMed  CAS  Google Scholar 

  43. Hake, L.E., Mendez, R., and Richter, J.D. (1998). Specificity of RNA binding by CPEB: Requirement for RNA recognition motifs and a novel zinc finger. Mol. Cell. Biol. 18, 685–693.

    PubMed  CAS  Google Scholar 

  44. Stebbins-Boaz, B., Hake, L.E., and Richter, J.D. (1996). CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 15, 2582–2592.

    PubMed  CAS  Google Scholar 

  45. Lantz, V., Chang, J., Horabin, J., Bopp, D., and Schedi, P. (1994). The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 8, 598–613.

    Article  PubMed  CAS  Google Scholar 

  46. Chang, J., Tan, L., and Schedl, P. (1999). The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev. Biol. 215, 91–106.

    Article  PubMed  CAS  Google Scholar 

  47. Walker, J., Minshall, C., Hake, L., Richter, J., and Standart, N. (1999). The clam 3’UTR masking element-binding protein p82 is a member of the CPEB family. RNA. 5, 14–26.

    Article  PubMed  CAS  Google Scholar 

  48. Luitjens, C., Gallegos, M., Kraemer, B., Kimble, J., and Wickens, M. (2000). CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev. 14, 2596–2609.

    Article  PubMed  CAS  Google Scholar 

  49. Gebauer, F. and Richter, J. (1996). Mouse cytoplasmic polyadenylylation element binding protein: An evolutionary conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA. Proc. Natl. Acad. Sci. USA. 93, 14602–14607.

    Article  PubMed  CAS  Google Scholar 

  50. Bally-Cuif, L., Schatz, W.J., and Ho, R.K. (1998). Characterization of the zebrafish Orb/CPEB-related RNA-binding protein and localization of maternal components in the zebrafish oocyte. Mech. Dev. 77, 31–47.

    Article  PubMed  CAS  Google Scholar 

  51. Welk, J.F., Charlesworth, A., Smith, G.D, and MacNichols, A.M. (2001). Identification and characterization of the gene encoding human cytoplasmic polyadenylation element binding protein. Gene 263: 113–120.

    Article  PubMed  CAS  Google Scholar 

  52. Stutz, A., Huarte, J., Gubler, P., Conne, B., Belin, D., and Vassalli, J.-D. (1997). In vivo antisense oligodeoxynucleotide mapping reveals masked regulatory elements in an mRNA dormant in mouse oocytes. Mol. Cell. Biol. 17 1759–1767.

    Article  PubMed  Google Scholar 

  53. Huarte, J., Stutz, A., O’Connell, M.L., Gubler, P., Belin, D., Darrow, A.L., Strickland, S., and Vassali, J.-D. (1992). Transient translational silencing by reversible mRNA deadenylation. Cell. 69, 1021–1030.

    Article  PubMed  CAS  Google Scholar 

  54. Culp, P.A. and Musci, T.J. (1998). Translational activation and cytoplasmic polyadenylation of FGF receptor-1 are independently regulated during Xenopus oocyte maturation. Dev. Biol. 193, 63–76.

    Article  PubMed  CAS  Google Scholar 

  55. Sachs, A., Physical and functional interactions between the mRNA cap structure and the poly(A) tail, in Translational control of gene expression, N. Sonenberg, J. Hershey, and M. Mathews, Editors. 2000, Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York.

    Google Scholar 

  56. Gillian-Daniel, D.L., Gray, N.K., Astrom, J., Barkoff, A., and Wickens, M. (1998). Modifications of the 5’ cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol. Cell Biol. 18, 6152–6153.

    PubMed  CAS  Google Scholar 

  57. Kuge, H. and Richter, J. (1995). Cytoplasmic 3’ poly(A) addition induces 5’ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J. 14, 6301–6310.

    PubMed  CAS  Google Scholar 

  58. Gray, N., Coller, J., Dickson, K., and Wickens, M. (2000). Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 19, 4723–4733.

    Article  PubMed  CAS  Google Scholar 

  59. Wakiyama, M., Imataka, H., and Sonenberg, N. (2000). Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr Biol. 10, 1147–1150.

    Article  PubMed  CAS  Google Scholar 

  60. Zelus, B.D., Giebelhaus, D.H., Eib, D.W., Kenner, K.A., and Moon, R.T. (1989). Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol. 9, 2756–2760.

    PubMed  CAS  Google Scholar 

  61. Voeltz, G.K., Ongkasuwan, J., Standart, N., and Steitz, J.A. (2001). A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes and Dev. 15, 774–778.

    Article  PubMed  CAS  Google Scholar 

  62. Wormington, M., Searfoss, A., and Hurney, C. (1996). Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes. EMBO J. 15, 900–909.

    PubMed  CAS  Google Scholar 

  63. Stebbins-Boaz, B., Cao, Q., de Moor, C.H., Mendez, R., and Richter, J.D. (1999). Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell. 4, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  64. Groisman, I., Huang, Y.-S., Mendez, R., Cao, Q., Therkauf, W., and Richter, J. (2000). CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: Implications for local translational control of cell division. Cell. 103, 435–447.

    Article  PubMed  CAS  Google Scholar 

  65. Minshall, N., Thom, G., and Standart, N. Conserved role of a DEAD-box helicase in mRNA masking. Submitted to RNA, 2001.

    Google Scholar 

  66. Ladomery, M., Wade, E., and Sommerville, J. (1997). Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucl. Acids Res. 25, 965–973.

    Article  PubMed  CAS  Google Scholar 

  67. Jankowsky, E., Gross, C.H., Shuman, S., and Pyle, A.M. (2001). Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science. 291, 121–125.

    Article  PubMed  CAS  Google Scholar 

  68. Dickson, K.S., Bilger, A., Ballantyne, S., and Wickens, M.P. (1999). The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation. Mol. Cell. Biol. 19, 5707–5717.

    PubMed  CAS  Google Scholar 

  69. Mendez, R., Murthy, K.G.K., Ryan, K., Manley, J.L., and Richter, J.D. (2000). Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell. 6, 1253–1259.

    Article  PubMed  CAS  Google Scholar 

  70. Paris, J., Swenson, K., Piwnica-Worms, H., and Richter, J.D. (1991). Maturation-specific polyadenylation: in vitro activation by p34cdc2 and phosphorylation of a 58kD CPE-binding protein. Genes Dev. 5, 1697–1708.

    Article  PubMed  CAS  Google Scholar 

  71. Rechsteiner, M. and Rogers, S. (1996). PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267–271.

    CAS  Google Scholar 

  72. Reverse, C.G., Ahearn, M.D., and Hake, L.E. (2001). CPEB degradation during Xenopus oocyte maturation rewuires a PEST domain and the 26S proteasome. Dev. Biol. 231: 447–458.

    Article  Google Scholar 

  73. Shibuya, E.K., Boulton, T.G., Cobb, M.H., and Ruderman, J.V. (1992). Activation of p42 MAP kinase and the release of oocytes from cell cycle arrest. 11, 3963–3975.

    CAS  Google Scholar 

  74. Andresson, T. and Ruderman, J.V. (1998). The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J. 17, 5627–5637.

    Article  PubMed  CAS  Google Scholar 

  75. Frank-Vaillant, M., Haccard, O., Thibier, C., Ozon, R., Arlot-Bonnemains, Y., Prigent, C., and Jessus, C. (2000). Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J. Cell Sci. 113, 1127–1138.

    PubMed  CAS  Google Scholar 

  76. Howard, E.L., Charlesworth, A., Welk, J., and MacNicol, A.M. (1999). The mitogenactivated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. Mol. Cell. Biol. 19, 1990–1999.

    PubMed  CAS  Google Scholar 

  77. Mendez, R., Hake, L.E., Andresson, T., Littlepage, L.E., Ruderman, J.V., and Richter, J.D. (2000). Phosphorylation of CPE binding factor by Eg2 regulates translation of cmos mRNA. Nature. 404, 302–307.

    Article  PubMed  CAS  Google Scholar 

  78. Verrotti, A., Thompson, S., Wreden, C., Strickland, S., and Wickens, M. (1996). Evolutionary conservation of sequence elements controlling cytoplasmic polyadenylation. Proc. Natl. Acad. Sci. USA. 93, 9027–9032.

    Article  PubMed  CAS  Google Scholar 

  79. Gunkel, N., Yano, T., Markussen, F.-H., Olsen, L.C., and Ephrussi, A. (1998). Localization-dependent translation requires a functional interaction between the 5’ and 3’ ends of oskar mRNA. Genes. Dev. 12, 1652–1664.

    Article  PubMed  CAS  Google Scholar 

  80. Gavis, E.R., Lunsford, L., Bergsten, S.E., and Lehmann, R. (1996). A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development. 122, 2791–2800.

    PubMed  CAS  Google Scholar 

  81. Kim-Ha, J., Kerr, K., and Macdonald, P. (1995). Translational regulation of oskar mRNA by Bruno, an ovarian RNA-binding protein, is essential. Cell. 81, 403–412.

    Article  PubMed  CAS  Google Scholar 

  82. Webster, P.J., Liang, L., Berg, C.A., Lasko, P., and Macdonald, P.M. (1997). Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev. 11, 2510–2521.

    Article  PubMed  CAS  Google Scholar 

  83. Micklem, D.R., Adams, J., Grunert, S., and St. Johnston, D. (2000). Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366–1377.

    Article  PubMed  CAS  Google Scholar 

  84. Smibert, C., Lie, Y., Shillinglaw, W., Henzel, W., and Macdonald, P. (1999). Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro. RNA. 5, 1535–1547.

    Article  PubMed  CAS  Google Scholar 

  85. Dahanukar, A., Walker, J.A., and Wharton, R.P. (1999). Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell. 4, 209–218.

    Article  PubMed  CAS  Google Scholar 

  86. Crucs, S., Chatterjee, S., and Gavis, E. (2000). Overlapping but distinct RNA elements control repression and activation of nanos translation. Mol Cell. 5, 457–467.

    Article  PubMed  CAS  Google Scholar 

  87. Markussen, F.-H., Michon, A.-M., Breitwieser, W., and Ephrussi, A. (1995). Translational control of oskar generates Short OSK, the isoform that induces pole plasm assembly. Development. 121, 3723–3732.

    PubMed  CAS  Google Scholar 

  88. Carrera, P., Johnstone, O., Nakamura, A., Casanova, J., Jackie, H., and Lasko, P. (2000). VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol Cell. 5, 181–187.

    Article  PubMed  CAS  Google Scholar 

  89. Thompson, S., Goodwin, E., and Wickens, M. (2000). Rapid deadenylation and poly(A)-dependent translational repression mediated by the Caenorhabditis elegans tra-2 3’ untranslated region in the Xenopus embryos. Mol. Cell. Biol. 20, 2129–2137.

    Article  PubMed  CAS  Google Scholar 

  90. Niessing, D., Dostatni, N., Jackie, H., and Rivera-Pomar, R. (1999). Sequence interval within the PEST motif of bicoid is important for translational repression of caudal mRNA in the anterior region of the Drosophila embryo. EMBO J. 18, 1966–1973.

    Article  PubMed  CAS  Google Scholar 

  91. Rivera-Pomar, R., Niessing, D., Schmidt-Ott, U., Gehring, W.J., and Jackie, H. (1996). RNA binding and translational suppression by bicoid. Nature. 379, 746–749.

    Article  PubMed  CAS  Google Scholar 

  92. Wharton, R.P., J., S., Lee, T., Patterson, M., and Murata, Y. (1998). The pumilio RNA-binding domain is also a translational repressor. Mol. Cell. 1, 863–872.

    CAS  Google Scholar 

  93. Ostareck-Lederer, A., Ostareck, D.H., Standart, N., and Thiele, B.J. (1994). Translation of 15-lipoxygenase mRNA is controlled by a protein that binds to a repeated sequence in the 3’ untranslated region. EMBO J. 13, 1476–1481.

    PubMed  CAS  Google Scholar 

  94. Ostareck, D.H., Ostareck-Lederer, A., Shatsky, I.N., and Hentze, M.W. (2001). Lipoxygenase mRNA silencing in erythroid differentiation: The 3’UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290

    Article  PubMed  CAS  Google Scholar 

  95. Wilhelm, J., Vale, R., and Hegde, R. (2000). Coordinate control of translation and localization of Vgl mRNA in Xenopus oocytes. Proc Natl Acad Sci U S A. 97, 13132–13137.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang, B., Gallegos, M., Puoti, A., Durkin, E., Fields, S., Kimble, J., and Wickens, M.P. (1997). A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature. 390, 477–484.

    Article  PubMed  CAS  Google Scholar 

  97. Kraemer, B., Crittenden, S., Gallegos, M., Moulder, G., Barstead, R., Kimble, J., and Wickens, M. (1999). NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr. Biol. 9, 1009–1018.

    Article  PubMed  CAS  Google Scholar 

  98. Jin, S.W., Kimble, J., and Ellis, R.E. (2001). Regulation of cell fate in Caenorhabditis elegans by a novel cytoplasmic polyadenylation element binding protein. Dev. Biol. 229, 537–553.

    Article  PubMed  CAS  Google Scholar 

  99. Zamore, P., Williamson, J., and Lehmann, R. (1997). The pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA. 3, 1421–1433.

    PubMed  CAS  Google Scholar 

  100. Sonoda, J. and Wharton, R.P. (1999). Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 13, 2704–2712.

    Article  PubMed  CAS  Google Scholar 

  101. Spirin, A.S., On ‘masked’ forms of messenger RNA in early embryogenesis and in other differentiating systems. Current Topics in Developmetal Biology, ed. A.A. Moscona and A. Monroy. Vol. I. 1966, New York: Academic Press. 1–38.

    Google Scholar 

  102. Nakahata, S., Katsu, Y., Mita, K., Inoue, K., Nagakama, Y., and Yamashita, Y. (2001). Biochemical identification of Xenopus pumilioasa sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. J. Biol. Chem. 276: 20945–20953.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Standart, N. (2002). Translational Regulation of Masked Maternal mRNAs in Early Development. In: Sandberg, K., Mulroney, S.E. (eds) RNA Binding Proteins. Endocrine Updates, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6446-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6446-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4935-6

  • Online ISBN: 978-1-4757-6446-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics