Skip to main content

Monitoring the Effect of PDT on in Vivo Oxygen Saturation and Microvascular Circulation

  • Conference paper
Oxygen Transport to Tissue XXV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 540))

Abstract

Photodynamic therapy (PDT) is a treatment for various malignant and benign lesions using light-activated photosensitising drugs in the presence of molecular oxygen. PDT causes tissue damage by a combination of processes involving the production of reactive oxygen species (in particular singlet oxygen), which can directly induce cell killing1, or indirectly via disruption of the tissue microvasculature2. Since the cytotoxic effect relies on the presence of oxygen, monitoring of tissue oxygenation both during and after PDT is important for understanding the basic physiological mechanisms and dosimetry of PDT3,4. Furthermore, it is known that the tumour destruction can be limited by the amount of available oxygen5, 6. During irradiation, changes in tissue oxygenation occur due to PDT-induced vasoconstriction and oxygen consumption in photodynamic reactions. Thereby tissue oxygenation can be reduced to levels insufficient for any further tumour destruction7, 8. In order to prevent a significant reduction in available oxygen levels, online real time monitoring could be useful during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. D. Mason, Cellular aspects of photodynamic therapy for cancer. Rev. Contemp. Pharmacother. 10, 25 - 37 (1999).

    CAS  Google Scholar 

  2. E. Ben-Hur, A. Orenstein, The endothelium and red blood cells as potential targets in PDT-induced vascular stasis. Int. J. Radial Biol. 60, 293 - 301 (1991).

    Article  CAS  Google Scholar 

  3. V. H. Fingar, T. J. Wieman, S. W. Taber, P. Singh, S. J. Kempf, C. G. Pietsch and C. Maldonado, Use of scanning doppler velocimetry to monitor vascular changes during photodynamic therapy. SPIE 3592, 1419 (1999).

    Google Scholar 

  4. Q. Chen, H. Chen and F. W. Hetzel, Tumor oxygenation changes post-photodynamic therapy. Photochemistry and Photobiology, 63, 128 - 131 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. B. W. Henderson, and V.H. Fingar, Oxygen limitation of direct tumor cell kill during photodynamic treatment of a murine tumor model. Photochem. Photobiol. 49, 299 - 304 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. B. W. Henderson, and V. H. Fingar, Relationship of tumor hypoxia and response to Photodynamic treatment in an experimental mouse tumor. Cancer Res. 47, 3110 - 3114 (1987).

    PubMed  CAS  Google Scholar 

  7. T. M. Sitnik, J. A. Hampton, and B. W. Henderson, Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. Br. J. Cancer. 77, 1386 - 1394 (1998).

    Article  PubMed  CAS  Google Scholar 

  8. B. W. Henderson, T. M. Busch, L. A. Vaughan, N. P. Frawley, D. Babich, T. A. Sosa, J. D. Zollo, Dee, A. S., Cooper, M. T., Bellnier, D. A., W. R. Greco, and A. R. Oseroff, Photofrin Photodynamic Therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate. Cancer Res. 60, 525 - 529 (2000).

    PubMed  CAS  Google Scholar 

  9. H. Messman, P. Mlkvy, G. Buonaccorsi, C. L. Davies, A. J. MacRobert and S. G. Bown, Enhancement of photodynamic therapy with 5-aminoaevulinic acid-induced porphyrin photosensitisation in normal rat colon by threshold and light fractionation studies. Br. J. Cancer.72, 589 - 594 (1995).

    Google Scholar 

  10. S.G. Bown, C. J. Tralau, P. D. Coleridge-Smith, D. Akdemir and T. J. Weiman, Photodynamic therapy with porphyrin and phthalocyanine sensitisation: Quantitative studies in normal rat liver. British Journal of Cancer, 54, 43 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. B. W. McIlroy, A. Cumow, G. Buonaccorsi, M. A. Scott. S. G. Bown, and A. J. MacRobert, Spatial measurement of oxygen levels during photodynamic therapy using time-resolved optical spectroscopy. J. Photochem. Photobiol. B. 43, 47 - 55 (1998).

    Article  PubMed  CAS  Google Scholar 

  12. F. Steinberg, H. J. Rohrborn, T. Otto, K. M. Scheufler, and C. Streffer, NIR reflection measurements of hemoglobin and cytochrome aa3 in healthy tissue and tumors. Correlations to oxygen consumption: preclinical and clinical data, in: Oxygen Transport to Tissue XIX, edited by Harrison, and D. T. Delpy, ( Plenum Press, New York, 1997 ), pp. 69 - 76.

    Chapter  Google Scholar 

  13. F. Steinberg, H. J. Rohrbom, K. M. Scheufler, S. Asgari, H. A. Trost, V. Seifert, D. Stolke and C. Streffer NIR reflection spectroscopy based oxygen measurements and therapy monitoring in brain tissue and intracranial neoplasms. Correlation to MRI and angiography, in: Oxygen Transport to Tissue XIX, edited by, Harrison and D. T. Delpy, ( Plenum Press, New York, 1997 ), pp. 553 - 560.

    Chapter  Google Scholar 

  14. C. D. Gomersall, P. L. Leung, T. Gin, G. M. Joynt, R. J. Young, W. S. Poon, and T. E. Oh, A comparison of the Hamamatsu NIRO 500 and the INVOS 3100 near-infrared spectrophotometers. Anaesth. Intensive Care. 26, 548 - 557 (1998).

    PubMed  CAS  Google Scholar 

  15. K. H. Frank, M. Kessler, K. Appelbaum, and W. Dummler, The Erlangen micro-lightguide spectrophotometer EMPHO I. Phys. Med. Biol. 34, 1883 - 1900 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, Spectroscopic analysis of neural activity in brain: Increased oxygen consumption following activation of barrel cortex. Neuroimage, 13, 540 - 543 (1991).

    Article  Google Scholar 

  17. D. A. Bellnier, W. R. Potter, L. A. Vaughan, T. M. Sitnik, J.C. Parsons, W. R. Greco, J. Whitaker, P. Johnson and B. W. Henderson, The validation of a new vascular damage assay for photodynamic therapy agents. Photochem. Photobiol. 62, 896 - 905 (1995).

    Article  PubMed  CAS  Google Scholar 

  18. Z. Chen, T. E. Milner, X. Wang, S. Srinivas and J. S. Nelson, Optical Doppler Tomography: Imaging in vivo blood flow dynamics following pharmacological intervention and photodynamic therapy. Photochem. Photobiol. 67, 56 - 60 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. V. H. Fingar, T. J. Wieman, S. A. Wiehle, and P. B. Cerrito, The Role of Microvascular Damage in Photodynamic Therapy: The Effect of Treatment on Vessel Constriction, Permeability, and Leukocyte Adhesion. Cancer Research, 52, 4914 - 4921 (1992).

    PubMed  CAS  Google Scholar 

  20. H. Barr, Photodynamic therapy in the normal rat colon with phthalocyanine sensitisation. British Journal of Cancer. 56, 111 - 118 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this paper

Cite this paper

Woodhams, J.H., Kunz, L., Bown, S.G., MacRobert, A.J. (2003). Monitoring the Effect of PDT on in Vivo Oxygen Saturation and Microvascular Circulation. In: Thorniley, M., Harrison, D.K., James, P.E. (eds) Oxygen Transport to Tissue XXV. Advances in Experimental Medicine and Biology, vol 540. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6125-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6125-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3428-4

  • Online ISBN: 978-1-4757-6125-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics