Advertisement

Dehydroepiandrosterone (DHEA) and its Sulfate (DHEAS) in Critical Illness

  • A. Beishuizen
  • A. B. J. Groeneveld
Conference paper

Abstract

Dehydroepiandrosterone (DHEA) is the most abundant circulating hormone in the human body and can be converted to either androgens or estrogens. It is readily conjugated to its sulfate ester, DHEAS, and they are designated as DHEA(S) here when used together [1]. DHEA has received considerable attention in the lay and scientific press for its anti-aging effects and as mediator of several diseases. A number of reports have suggested that DHEAS levels are inversely related to cardiovascular disease and mortality, but findings have not been consistent [2]. In the USA, DHEA is currently available as an over-the counter drug; as a precursor of testosterone, entitled as a “fountain of youth” [3] or “the last elixir”.

Keywords

Critical Illness Adrenal Insufficiency Adrenal Androgen Zona Reticularis DHEAS Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ebeling P, Koivisto VA (1994) Physiological importance of dehydroepiandrosterone. Lancet 343: 1479–1481PubMedCrossRefGoogle Scholar
  2. 2.
    Trivedi DP, Khaw KT (2001) Dehydroepiandrosterone sulfate and mortality in elderly men and women. J Clin Endocrinol Metab 86: 4171–4177PubMedCrossRefGoogle Scholar
  3. 3.
    Baulieu EE (1996) Dehydroepiandrosterone (DHEA): a fountain of youth? J Clin Endocrinol Metab 81: 3147–3151PubMedCrossRefGoogle Scholar
  4. 4.
    Arlt W, Callies F, van Vlijmen JC, et al (1999) Dehydroepiandrosterone replacement in women with adrenal insufficiency. N Engl J Med 341: 1013–1020PubMedCrossRefGoogle Scholar
  5. 5.
    Oberbeck R, Dahlweid M, Koch R, et al (2001) Dehydroepiandrosterone decreases mortality rate and improves cellular immune function during polymicrobial sepsis. Crit Care Med 29: 380–384PubMedCrossRefGoogle Scholar
  6. 6.
    Angele MK, Catania RA, Ayala A, Cioffi WG, Bland KI, Chaudry IH (1998) Dehydroepiandrosterone: an inexpensive steroid hormone that decreases the mortality due to sepsis following trauma-induced hemorrhage. Arch Surg 133: 1281–1288PubMedCrossRefGoogle Scholar
  7. 7.
    Araneo BA, Shelby J, Li GZ, Ku W, Daynes RA (1993) Administration of dehydroepiandrosterone to burned mice preserves normal immunologic competence. Arch Surg 128: 318–325PubMedCrossRefGoogle Scholar
  8. 8.
    Ben Nathan D, Padgett DA, Loria RM (1999) Androstenediol and dehydroepiandrosterone protect mice against lethal bacterial infections and lipopolysaccharide toxicity. J Med Microbiol 48: 425–431CrossRefGoogle Scholar
  9. 9.
    Schurr MJ, Fabian TC, Croce MA, Varnavas LE, Proctor KG (1997) Dehydroepiandrosterone, an endogenous immune modulator, after traumatic shock. Shock 7: 55–59PubMedCrossRefGoogle Scholar
  10. 10.
    Loria RM, Inge TH, Cook SS, Szakal AK, Regelson W (1988) Protection against acute lethal viral infections with the native steroid dehydroepiandrosterone ( DHEA ). J Med Virol 26: 301–314Google Scholar
  11. 11.
    Jarrar D, Kuebler JF, Wang P, Bland KI, Chaudry IH (2001) DHEA: a novel adjunct for the treatment of male trauma patients. Trends Mol Med 7: 81–85PubMedCrossRefGoogle Scholar
  12. 12.
    Parker LN (1991) Control of adrenal androgen secretion. Endocrinol Metab Clin North Am 20: 401–421PubMedGoogle Scholar
  13. 13.
    van Weerden WM, Bierings HG, van Steenbrugge GJ, de Jong FH, Schroder FH (1992) Adrenal glands of mouse and rat do not synthesize androgens. Life Sci 50: 857–861PubMedCrossRefGoogle Scholar
  14. 14.
    Orentreich N, Brind JL, Vogelman JH, Andres R, Baldwin H (1992) Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J Clin Endocrinol Metab 75: 1002–1004PubMedCrossRefGoogle Scholar
  15. 15.
    Wolkersdorfer GW, Lohmann T, Marx C, et al (1999) Lymphocytes stimulate dehydroepiandrosterone production through direct cellular contact with adrenal zona reticularis cells: a novel mechanism of immune-endocrine interaction. J Clin Endocrinol Metab 84: 4220–4227PubMedCrossRefGoogle Scholar
  16. 16.
    Regelson W, Kalimi M (1994) Dehydroepiandrosterone (DHEA) - the multifunctional steroid. II. Effects on the CNS, cell proliferation, metabolic and vascular, clinical and other effects. Mechanism of action? Ann NY Acad Sci 719: 564–575Google Scholar
  17. 17.
    McLachlan JA, Serkin CD, Bakouche O (1996) Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity. J Immunol 156: 328–335PubMedGoogle Scholar
  18. 18.
    Regelson W, Loria R, Kalimi M (1994) Dehydroepiandrosterone (DHEA) - the “mother steroid”. I. Immunologic action. Ann NY Acad Sci 719: 553–563Google Scholar
  19. 19.
    Daynes RA, Araneo BA, Ershler WB, Maloney C, Li GZ, Ryu SY (1993) Altered regulation of IL-6 production with normal aging. Possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivative. J Immunol 150: 5219–5230Google Scholar
  20. 20.
    Danenberg HD, Alpert G, Lustig S, Ben Nathan D (1992) Dehydroepiandrosterone protects mice from endotoxin toxicity and reduces tumor necrosis factor production. Antimicrob Agents Chemother 36: 2275–2279PubMedCrossRefGoogle Scholar
  21. 21.
    Parker LN, Levin ER, Lifrak ET (1985) Evidence for adrenocortical adaptation to severe illness. J Clin Endocrinol Metab 60: 947–952PubMedCrossRefGoogle Scholar
  22. 22.
    Wade CE, Lindberg JS, Cockrell JL, et al (1988) Upon-admission adrenal steroidogenesis is adapted to the degree of illness in intensive care unit patients. J Clin Endocrinol Metab 67: 223–227PubMedCrossRefGoogle Scholar
  23. 23.
    Semple CG, Gray CE, Beastall GH (1987) Adrenal androgens and illness. Acta Endocrinol (Copenh) 116: 155–160Google Scholar
  24. 24.
    Lephart ED, Baxter CR, Parker CR, Jr (1987) Effect of burn trauma on adrenal and testicular steroid hormone production. J Clin Endocrinol Metab 64: 842–848PubMedCrossRefGoogle Scholar
  25. 25.
    Luppa P, Munker R, Nagel D, Weber M, Engelhardt D (1991) Serum androgens in intensive-care patients: correlations with clinical findings. Clin Endocrinol (Oxf) 34: 305–310CrossRefGoogle Scholar
  26. 26.
    Spratt DI, Longcope C, Cox PM, Bigos ST, Wilbur-Welling C (1993) Differential changes in serum concentrations of androgens and estrogens (in relation with cortisol) in postmenopausal women with acute illness. J Clin Endocrinol Metab 76: 1542–1547PubMedCrossRefGoogle Scholar
  27. 27.
    Bornstein SR, Wolkersdorfer GW, Tauchnitz R, Preas HL, Chrousos GP, Suffredini AF (2000) Plasma dehydroepiandrosterone levels during experimental endotoxemia and anti-inflammatory therapy in humans. Crit Care Med 28: 2103–2106PubMedCrossRefGoogle Scholar
  28. 28.
    Schuld A, Mullington J, Friess E, et al (2000) Changes in dehydroepiandrosterone ( DHEA) and DHEA-sulfate plasma levels during experimental endotoxinemia in healthy volunteers. J Clin Endocrinol Metab 85: 4624–4629Google Scholar
  29. 29.
    Folan MM, Stone RA, Pittenger AL, Stoffel JA, Hess MM, Kroboth PD (2001) Dehydroepiandrosterone, dehydroepiandrosterone-sulfate, and cortisol concentrations in intensive care unit patients. Crit Care Med 29: 965–970PubMedCrossRefGoogle Scholar
  30. 30.
    Beishuizen A, Thijs LG (2001) Relative adrenal failure in intensive care: an identifiable problem requiring treatment? Best Pract Res Clin Endocrinol Metab 15: 513–531PubMedCrossRefGoogle Scholar
  31. 31.
    Beishuizen A, Vermes I, Hylkema BS, Haanen C (1999) Relative eosinophilia and functional adrenal insufficiency in critically ill patients. Lancet 353: 1675–1676PubMedCrossRefGoogle Scholar
  32. 32.
    Parker CR Jr, Slayden SM, Azziz R, et al (2000) Effects of aging on adrenal function in the human: responsiveness and sensitivity of adrenal androgens and cortisol to adrenocorticotropin in premenopausal and postmenopausal women. J Clin Endocrinol Metab 85: 48–54PubMedCrossRefGoogle Scholar
  33. 33.
    Vermes I, Beishuizen A, Hampsink RM, Haanen C (1995) Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J Clin Endocrinol Metab 80: 1238–1242PubMedCrossRefGoogle Scholar
  34. 34.
    Beishuizen A, Thijs LG, Vermes I (2002) Decreased levels of dehydroepiandrosterone sulphate in severe critical illness: a sign of exhausted adrenal reserve? Crit Care 6: 434–438PubMedCrossRefGoogle Scholar
  35. 35.
    van den Berghe G, de Zegher F, Wouters P, et al (1995) Dehydroepiandrosterone sulphate in critical illness: effect of dopamine Clin Endocrinol (Oxf) 43: 457–463CrossRefGoogle Scholar
  36. 36.
    Straub RH, Konecna L, Hrach S, et al (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 83: 2012–2017PubMedCrossRefGoogle Scholar
  37. 37.
    Mastorakos G, Chrousos GP, Weber JS (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 77: 1690–1694PubMedCrossRefGoogle Scholar
  38. 38.
    Gennari R, Alexander JW (1997) Arginine, glutamine, and dehydroepiandrosterone reverse the immunosuppressive effect of prednisone during gut-derived sepsis. Crit Care Med 25: 1207–1214PubMedCrossRefGoogle Scholar
  39. 39.
    Araneo B, Daynes R (1995) Dehydroepiandrosterone functions as more than an antiglucocorticoid in preserving immunocompetence after thermal injury. Endocrinology 136: 393401Google Scholar
  40. 40.
    Jarrar D, Wang P, Cioffi WG, Bland KI, Chaudry IH (2000) Mechanisms of the salutary effects of dehydroepiandrosterone after trauma-hemorrhage: direct or indirect effects on cardiac and hepatocellular functions? Arch Surg 135: 416–422PubMedCrossRefGoogle Scholar
  41. 41.
    Hunt PJ, Gurnell EM, Huppert FA, et al (2000) Improvement in mood and fatigue after dehydroepiandrosterone replacement in Addison’s disease in a randomized, double blind trial. J Clin Endocrinol Metab 85: 4650–4656PubMedCrossRefGoogle Scholar
  42. 42.
    Callies F, Fassnacht M, van Vlijmen JC, et al (2001) Dehydroepiandrosterone replacement in women with adrenal insufficiency: effects on body composition, serum leptin, bone turnover, and exercise capacity. J Clin Endocrinol Metab 86: 1968–1972PubMedCrossRefGoogle Scholar
  43. 43.
    Van den Berghe G, de Zegher F, Bouillon R (1998) Clinical review 95: acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab 83: 18271834Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • A. Beishuizen
  • A. B. J. Groeneveld

There are no affiliations available

Personalised recommendations