Skip to main content

The Genus Wolinella

  • Chapter
The Prokaryotes

Abstract

The genus Wolinella was proposed (as was the genus Campylobacter) for certain species originally classified in the genus Vibrio and was placed in the family Bacteroidaceae (Krieg and Holt, 1984). Wolinella was named for Dr. Meyer Wolin, an American bacteriologist who first described a microorganism (Vibrio succinogenes) with a metabolism that characterizes this genus. Bacteria of the genus Wolinella are Gram-negative rods that may be straight, curved, or helical. They are motile by means of a single polar flagellum. They are anaerobic and can utilize hydrogen gas or formate as electron donor with fumarate or nitrate as electron acceptor. Under these conditions, fumarate can also serve as a sole carbon source (Bronder et al., 1982). Wolinella species do not oxidize or ferment carbohydrates, but peptides stimulate growth (Gillespie and Holt, 1987). The GC content of their DNA ranges from 42 to 48 mol% whereas the GC content of Campylobacter ranges from 28 to 38 mol%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abouchowski, S., D. Kafkewittz, and E. E Davis, 1979. A rapid purification procedure for L-asparaginase from Vibrio succinogenes. Prep. Biochem. 9: 205–211.

    Google Scholar 

  • Albanese, E. and D. Kafkewitz, 1978. Effect of medium composition on the growth and asparaginase production of Vibrio succinogenes. Appl. Environ. Microbiol. 36: 25–30.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Badger, S. J., and A. C. R. Tanner, 1981. Serological studies of Bacteroides gracilis, Campylobacter concisus, Wolinella recta, and Eikenella corrodens, all from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 446451.

    Google Scholar 

  • Bokranz, M., J. Katz, I. Schröder, A. M. Roberton, and A. Kröger, 1983. Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch. Microbiol. 135: 36–41.

    Article  CAS  Google Scholar 

  • Bronder, M., H. Mell, E. Stupperich, and A. Kröger, 1982. Biosynthetic pathway of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch. Microbiol. 131: 216–233.

    Article  PubMed  CAS  Google Scholar 

  • Dix, K., S. M. Watanabe, S. McArdle, C. Randolf, B. Monda, and D. E. Schwartz. 1990. Species-specific oligodeoxynucleotide probes for the identification of periodontal bacteria. J. Clin. Microbiol. 28: 319–323.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dzink, J. L., A. D. Haffajee, and S. S. Socransky, 1988. The predominant cultivable microbiota of active and inactive periodontal lesions. J. Clin. Periodontol. 15: 316–323.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J., and S. C. Holt, 1987. Growth studies of Wolinella recta, a Gram-negative periodontopathogen. Oral Microbiol. Immunol. 2: 105–111.

    CAS  Google Scholar 

  • Gunaratnam, M., G. L. E Smith, S. S. Socransky, C. M. Smith, A. D. Haffajee, 1990. Enumeration of subgingival species on primary isolation plates using colony lifts. Oral Microbiol. Immunol. 5: (in press)

    Google Scholar 

  • Haffajee, A. D., S. S. Socransky, J. L. Dzink, M. A. Taubman, and J. L. Ebersole, 1988. Clinical, microbiological and immunological features of subjects with refractory periodontal diseases. J. Clin. Periodontol. 15: 390–398.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, B. F. and D. Mallonee, 1988. A selective/differential medium for Wolinella recta. J. Dent. Res. 67:327, Abstr. no. 1712.

    Google Scholar 

  • Kafkewitz, D, 1975. Improved growth media for Vibrio suc- cinogenes. App. Environ. Microbiol. 29: 121–122.

    CAS  Google Scholar 

  • Kafkewitz, D. and D. Goodman, 1974. L-Asparaginase production by the rumen anaerobe Vibrio succinogenes. Appl. Environ. Microbiol. 27: 206–209.

    CAS  Google Scholar 

  • Kerosuo, E., M. Haapasalo, and K. Lounatmaa, 1989. Ultrastructural relationship of cell envelope layers in Wolinella recta. Scand. J. Dent. Res. 97: 54–59.

    PubMed  CAS  Google Scholar 

  • Krieg, W. E., and J. C. Holt (ed.), 1984. Bergey’s manual of systemic bacteriology, vol. 1. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kroger, A., E. Winkler, A. Innerhofer, H. Hackenberg, and H. Schagger, 1979. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur. J. Biochem. 94: 465–475.

    Article  PubMed  CAS  Google Scholar 

  • Kröger A., E. Dorrer and E. Winkler, 1980. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim. Biophys. Acta. 589: 118–136.

    Article  PubMed  Google Scholar 

  • Lai, C.-H., K. Oshima, M. A. Listgarten, and J. Slots, 1989. Distribution of Wolinella recta in adult periodontal disease. J. Dent. Res. 68:311, Abstr. no. 1040.

    Google Scholar 

  • Lai, C.-H., M. A. Listgarten, A. C. R. Tanner, and S. S. Socransky, 1981. Ultrastructures of Bacteroides gracilis, Campylobacter concisus, Wolinella recta, and Eikenella corrodens, all from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 465–475.

    Article  Google Scholar 

  • Lau, P. P., B. DeBrunner-Vossbrinck, B. Dunn, K. Miotto, M. T. MacDonell, D. M. Rollins, C. J. Pillidge, R. B. Hespell, R. R. Colwell, M. L. Sogin, and G. E. Fox, 1987. Phylogenetic diversity and position of the genus Campylobacter. Syst. Appl. Microbiol 9: 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Lauterbach, F., C. Körtner, D. Tripier, and G. Unden, 1987. Cloning and expression of the genes of two fumarate reductase subunits from Wolinella succinogenes. Eur. J. Biochem. 166: 447–452

    Article  PubMed  CAS  Google Scholar 

  • Macy, J. M., I. Schröder, R. K. Thauer, and A. Kroger, 1986. Growth of Wolinella succinogenes on HZS plus fumar-ate and on formate plus sulfur as energy sources. Arch. Microbiol. 144: 147–150.

    Article  CAS  Google Scholar 

  • Moore, L. V. H., W. E C. Moore, E. P. Cato, R. M. Smibert, J. A. Burmeister, and A. M. Best, 1987. Bacteriology of human gingivitis. J. Dent. Res. 66: 989–995.

    Article  PubMed  CAS  Google Scholar 

  • Niederman, R. A., and M. J. Wolin, 1972. Requirement of succinate for the growth of Vibrio succinogenes. J. Bacteriol. 109: 546–549.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ohta, H., and J. C. Gottschal, 1988. Microaerophilic growth of Wolinella recta ATCC 33238. FEMS Microbiol. Ecol. 53 (2): 79–86

    CAS  Google Scholar 

  • Olsen, I., and S. S. Socransky, 1981. Ultrasonic dispersion of pure cultures of plaque bacteria and plaque. Scand. Dent. Res. 89: 307–312

    CAS  Google Scholar 

  • Paster, B. J., and E E. Dewhirst, 1988. Phylogeny of campylobacters, wolinellas, Bacteroides gracilis and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38: 56–62.

    Article  CAS  Google Scholar 

  • Radcliffe, C. W., D. Kafkewitz, and S. Abouchowski, 1979. Asparaginase production by human clinical isolates of Vibrio succinogenes. Appl. Environ. Microbiol. 38: 761–762.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Romaniuk, P.., B. Zoltowska, T. J. Trust, D. J. Lane, G. J. Olsen, N. R. Pace, and D. A. Stahl, 1987. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp.. J. Bacteriol. 169: 2137–2141.

    Google Scholar 

  • Schröder, I., A. Kroger, and J. M. Macy, 1988. Isolation of the sulfur reductase and reconstitution of the sulfur respiration of Wolinella succinogenes. Arch. Microbiol. 149: 572–579.

    Article  Google Scholar 

  • Schröder, I., A. M. Roberton, M. Bokranz, G. Unden, R. Böcher, and A. Kroger, 1985. The membraneous nitrite reductase involved in the electron transport of Wolinella succinogenes. Arch. Microbiol. 140: 380–386.

    Article  Google Scholar 

  • Sleytr, U. B., and P. Messner, 1983. Crystalline surface lay- ers on bacteria. Ann. Rev. Microbiol. 37: 311–339.

    Article  CAS  Google Scholar 

  • Smibert, R. M. and L. V. Holdeman, 1976. Clinical isolates of anaerobic Gram-negative rods with a formate-fumarate energy metabolism: Bacteroides corrodens, Vi-brio succinogenes and unidentified strains. J. Clin. Microbiol. 3: 432–437.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Smith, G. L. E, S. S. Socransky, and C. M. Smith, 1989. Non-isotopic DNA probes for the identification of subgingival microorganisms. Oral Microbiol. Immunol. 4: 41–46.

    Google Scholar 

  • Speigel, C. A., and G. Telford, 1984. Isolation of Wolinella recta and Actinomyces viscosus from an actinomycotic chest wall mass. J. Clin. Microbiol. 20: 1187–1189.

    Google Scholar 

  • Stackebrandt, E., V. Fowler, H. Mell, and A. Kröger, 1987. 16S rRNA analysis and the phylogenetic position of Wolinella succinogenes. FEMS Microbiology Letters 40: 269–272.

    Google Scholar 

  • Sundqvist, G., 1976. Bacteriological studies of necrotic dental pulps. Ph. D. thesis. Umea University Odontological Dissertations, No. 7. Umea, Sweden.

    Google Scholar 

  • Takamori, K., Y. Eto. A. Yamamoto, M. Takahashi, E. Mizuno, T. Sasaki, S. Higashi, 1982. Strict anaerobic organisms resembling Wolinella isolated from human gingival crevice. Japanese Journal of Oral Biology 24: 541–544.

    Article  Google Scholar 

  • Tanner, A. C. R., 1986. Characterization of Wolinella species, Campylobacter concisus, Bacteroides gracilis and Eikenella corrodens using polyacrylamide gel electrophoresis. J. Clin. Microbiol. 24: 562–565.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tanner, A. 1987. Media for cultivation of Eikenella corrodens and formate and fumarate requiring species of oral bacteria. Oral Microbiol. Immunol. 2: 187–189.

    Google Scholar 

  • Tanner, A. C. R., S. Badger, C.-H. Lai, M. A. Listgarten, R. A. Visconti, and S. S. Socransky, 1981. Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 432–445.

    Google Scholar 

  • Tanner, A. C. R., J. L. Dzink, J L Ebersole, and S. S. Socransky, 1987. Wolinella recta, Campylobacter conci-sus, Bacteroides gracilis, and Eikenella corrodens from periodontal lesions. J. Periodontol. Res. 22: 327–330.

    Google Scholar 

  • Tanner, A. C. R., C. Haffer, G. T. Bratthall, R. A. Visconti, and S. S. Socransky., 1979. A study of the bacteria associated with advancing periodontal disease in pian. J. Clin. Periodontal. 6: 278–307.

    Article  CAS  Google Scholar 

  • Tanner, A. C. R., M. A. Listgarten, and J. L. Ebersole, 1984. Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34: 275–282.

    Google Scholar 

  • Tanner, A. C. R., M. N. Strzempko, C. A. Belsky, and G. A. McKinley, 1985. API ZYM and API An-Ident reactions of fastidious oral Gram-negative species. J. Clin. Microbiol. 22: 333–335.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Teraguchi, S., and T. C. Hollocher, 1989. Purification and some characteristics of a cytochrome C-containing nitrous oxide reductase from Wolinella succinogenes. J. Biol. Chem. 264: 1972–1979.

    PubMed  CAS  Google Scholar 

  • Unden, G., H. Hackenberg, and A. Kroger, 1980. Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vi-brio succinogenes. Biochim. Biophys. Acta. 591: 275–288.

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke, T. E., V. R Jr. Dowell, S. Offenbacher, W. Snyder and T. Hersh, 1986. Potential role of microorganisms isolated from periodontal lesions in the pathogenesis of inflammatory bowel disease. Infect. Immunol. 53: 671–677.

    Google Scholar 

  • Van Palenstein Helderman, W. H., and I. Rosman, 1976. Hydrogen-dependent organisms from the human gingival crevice resembling Vibrio succinogenes. Antonie van Leeuwenhock J. Microbiol. Serol. 42: 107–118.

    Google Scholar 

  • Werner-Felmayer, G., B. Guggenheim, and R. Gmur, 1988. Production and characterization of monoclonal antibodies against Bacteroides forsythus and Wolinella recta. J. Dent. Res. 67: 548–553.

    Article  PubMed  CAS  Google Scholar 

  • Wolin, M. J., E. A. Wolin, and N. J. Jacobs, 1961. Cytochrome-producing anaerobic vibrio, Vibrio succinogenes sp. n. J. Bacteriol. 81: 911–917.

    CAS  Google Scholar 

  • Wu, M.-C., Arimura, G. K., and Yunis, A. A, 1978. Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. Int. J. Cancer, 22: 728–733.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari, T., 1980. N20 reduction by Vibrio succinogenes. Appl. Environ. Microbiol. 39: 81–84.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tanner, A., Paster, B.J. (1992). The Genus Wolinella . In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics