The Prokaryotes pp 3512-3523 | Cite as

The Genus Wolinella

  • Anne Tanner
  • Bruce J. Paster


The genus Wolinella was proposed (as was the genus Campylobacter) for certain species originally classified in the genus Vibrio and was placed in the family Bacteroidaceae (Krieg and Holt, 1984). Wolinella was named for Dr. Meyer Wolin, an American bacteriologist who first described a microorganism (Vibrio succinogenes) with a metabolism that characterizes this genus. Bacteria of the genus Wolinella are Gram-negative rods that may be straight, curved, or helical. They are motile by means of a single polar flagellum. They are anaerobic and can utilize hydrogen gas or formate as electron donor with fumarate or nitrate as electron acceptor. Under these conditions, fumarate can also serve as a sole carbon source (Bronder et al., 1982). Wolinella species do not oxidize or ferment carbohydrates, but peptides stimulate growth (Gillespie and Holt, 1987). The GC content of their DNA ranges from 42 to 48 mol% whereas the GC content of Campylobacter ranges from 28 to 38 mol%.


Periodontal Disease Fumaric Acid Formate Dehydrogenase Sodium Formate Fumarate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abouchowski, S., D. Kafkewittz, and E. E Davis, 1979. A rapid purification procedure for L-asparaginase from Vibrio succinogenes. Prep. Biochem. 9: 205–211.Google Scholar
  2. Albanese, E. and D. Kafkewitz, 1978. Effect of medium composition on the growth and asparaginase production of Vibrio succinogenes. Appl. Environ. Microbiol. 36: 25–30.PubMedPubMedCentralGoogle Scholar
  3. Badger, S. J., and A. C. R. Tanner, 1981. Serological studies of Bacteroides gracilis, Campylobacter concisus, Wolinella recta, and Eikenella corrodens, all from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 446451.Google Scholar
  4. Bokranz, M., J. Katz, I. Schröder, A. M. Roberton, and A. Kröger, 1983. Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch. Microbiol. 135: 36–41.CrossRefGoogle Scholar
  5. Bronder, M., H. Mell, E. Stupperich, and A. Kröger, 1982. Biosynthetic pathway of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch. Microbiol. 131: 216–233.PubMedCrossRefGoogle Scholar
  6. Dix, K., S. M. Watanabe, S. McArdle, C. Randolf, B. Monda, and D. E. Schwartz. 1990. Species-specific oligodeoxynucleotide probes for the identification of periodontal bacteria. J. Clin. Microbiol. 28: 319–323.PubMedPubMedCentralGoogle Scholar
  7. Dzink, J. L., A. D. Haffajee, and S. S. Socransky, 1988. The predominant cultivable microbiota of active and inactive periodontal lesions. J. Clin. Periodontol. 15: 316–323.PubMedCrossRefGoogle Scholar
  8. Gillespie, J., and S. C. Holt, 1987. Growth studies of Wolinella recta, a Gram-negative periodontopathogen. Oral Microbiol. Immunol. 2: 105–111.Google Scholar
  9. Gunaratnam, M., G. L. E Smith, S. S. Socransky, C. M. Smith, A. D. Haffajee, 1990. Enumeration of subgingival species on primary isolation plates using colony lifts. Oral Microbiol. Immunol. 5: (in press)Google Scholar
  10. Haffajee, A. D., S. S. Socransky, J. L. Dzink, M. A. Taubman, and J. L. Ebersole, 1988. Clinical, microbiological and immunological features of subjects with refractory periodontal diseases. J. Clin. Periodontol. 15: 390–398.PubMedCrossRefGoogle Scholar
  11. Hammond, B. F. and D. Mallonee, 1988. A selective/differential medium for Wolinella recta. J. Dent. Res. 67:327, Abstr. no. 1712.Google Scholar
  12. Kafkewitz, D, 1975. Improved growth media for Vibrio suc- cinogenes. App. Environ. Microbiol. 29: 121–122.Google Scholar
  13. Kafkewitz, D. and D. Goodman, 1974. L-Asparaginase production by the rumen anaerobe Vibrio succinogenes. Appl. Environ. Microbiol. 27: 206–209.Google Scholar
  14. Kerosuo, E., M. Haapasalo, and K. Lounatmaa, 1989. Ultrastructural relationship of cell envelope layers in Wolinella recta. Scand. J. Dent. Res. 97: 54–59.PubMedGoogle Scholar
  15. Krieg, W. E., and J. C. Holt (ed.), 1984. Bergey’s manual of systemic bacteriology, vol. 1. Williams and Wilkins, Baltimore.Google Scholar
  16. Kroger, A., E. Winkler, A. Innerhofer, H. Hackenberg, and H. Schagger, 1979. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur. J. Biochem. 94: 465–475.PubMedCrossRefGoogle Scholar
  17. Kröger A., E. Dorrer and E. Winkler, 1980. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim. Biophys. Acta. 589: 118–136.PubMedCrossRefGoogle Scholar
  18. Lai, C.-H., K. Oshima, M. A. Listgarten, and J. Slots, 1989. Distribution of Wolinella recta in adult periodontal disease. J. Dent. Res. 68:311, Abstr. no. 1040.Google Scholar
  19. Lai, C.-H., M. A. Listgarten, A. C. R. Tanner, and S. S. Socransky, 1981. Ultrastructures of Bacteroides gracilis, Campylobacter concisus, Wolinella recta, and Eikenella corrodens, all from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 465–475.CrossRefGoogle Scholar
  20. Lau, P. P., B. DeBrunner-Vossbrinck, B. Dunn, K. Miotto, M. T. MacDonell, D. M. Rollins, C. J. Pillidge, R. B. Hespell, R. R. Colwell, M. L. Sogin, and G. E. Fox, 1987. Phylogenetic diversity and position of the genus Campylobacter. Syst. Appl. Microbiol 9: 231–238.PubMedCrossRefGoogle Scholar
  21. Lauterbach, F., C. Körtner, D. Tripier, and G. Unden, 1987. Cloning and expression of the genes of two fumarate reductase subunits from Wolinella succinogenes. Eur. J. Biochem. 166: 447–452PubMedCrossRefGoogle Scholar
  22. Macy, J. M., I. Schröder, R. K. Thauer, and A. Kroger, 1986. Growth of Wolinella succinogenes on HZS plus fumar-ate and on formate plus sulfur as energy sources. Arch. Microbiol. 144: 147–150.CrossRefGoogle Scholar
  23. Moore, L. V. H., W. E C. Moore, E. P. Cato, R. M. Smibert, J. A. Burmeister, and A. M. Best, 1987. Bacteriology of human gingivitis. J. Dent. Res. 66: 989–995.PubMedCrossRefGoogle Scholar
  24. Niederman, R. A., and M. J. Wolin, 1972. Requirement of succinate for the growth of Vibrio succinogenes. J. Bacteriol. 109: 546–549.PubMedPubMedCentralGoogle Scholar
  25. Ohta, H., and J. C. Gottschal, 1988. Microaerophilic growth of Wolinella recta ATCC 33238. FEMS Microbiol. Ecol. 53 (2): 79–86Google Scholar
  26. Olsen, I., and S. S. Socransky, 1981. Ultrasonic dispersion of pure cultures of plaque bacteria and plaque. Scand. Dent. Res. 89: 307–312Google Scholar
  27. Paster, B. J., and E E. Dewhirst, 1988. Phylogeny of campylobacters, wolinellas, Bacteroides gracilis and Bacteroides ureolyticus by 16S ribosomal ribonucleic acid sequencing. Int. J. Syst. Bacteriol. 38: 56–62.CrossRefGoogle Scholar
  28. Radcliffe, C. W., D. Kafkewitz, and S. Abouchowski, 1979. Asparaginase production by human clinical isolates of Vibrio succinogenes. Appl. Environ. Microbiol. 38: 761–762.PubMedPubMedCentralGoogle Scholar
  29. Romaniuk, P.., B. Zoltowska, T. J. Trust, D. J. Lane, G. J. Olsen, N. R. Pace, and D. A. Stahl, 1987. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp.. J. Bacteriol. 169: 2137–2141.Google Scholar
  30. Schröder, I., A. Kroger, and J. M. Macy, 1988. Isolation of the sulfur reductase and reconstitution of the sulfur respiration of Wolinella succinogenes. Arch. Microbiol. 149: 572–579.CrossRefGoogle Scholar
  31. Schröder, I., A. M. Roberton, M. Bokranz, G. Unden, R. Böcher, and A. Kroger, 1985. The membraneous nitrite reductase involved in the electron transport of Wolinella succinogenes. Arch. Microbiol. 140: 380–386.CrossRefGoogle Scholar
  32. Sleytr, U. B., and P. Messner, 1983. Crystalline surface lay- ers on bacteria. Ann. Rev. Microbiol. 37: 311–339.CrossRefGoogle Scholar
  33. Smibert, R. M. and L. V. Holdeman, 1976. Clinical isolates of anaerobic Gram-negative rods with a formate-fumarate energy metabolism: Bacteroides corrodens, Vi-brio succinogenes and unidentified strains. J. Clin. Microbiol. 3: 432–437.PubMedPubMedCentralGoogle Scholar
  34. Smith, G. L. E, S. S. Socransky, and C. M. Smith, 1989. Non-isotopic DNA probes for the identification of subgingival microorganisms. Oral Microbiol. Immunol. 4: 41–46.Google Scholar
  35. Speigel, C. A., and G. Telford, 1984. Isolation of Wolinella recta and Actinomyces viscosus from an actinomycotic chest wall mass. J. Clin. Microbiol. 20: 1187–1189.Google Scholar
  36. Stackebrandt, E., V. Fowler, H. Mell, and A. Kröger, 1987. 16S rRNA analysis and the phylogenetic position of Wolinella succinogenes. FEMS Microbiology Letters 40: 269–272.Google Scholar
  37. Sundqvist, G., 1976. Bacteriological studies of necrotic dental pulps. Ph. D. thesis. Umea University Odontological Dissertations, No. 7. Umea, Sweden.Google Scholar
  38. Takamori, K., Y. Eto. A. Yamamoto, M. Takahashi, E. Mizuno, T. Sasaki, S. Higashi, 1982. Strict anaerobic organisms resembling Wolinella isolated from human gingival crevice. Japanese Journal of Oral Biology 24: 541–544.CrossRefGoogle Scholar
  39. Tanner, A. C. R., 1986. Characterization of Wolinella species, Campylobacter concisus, Bacteroides gracilis and Eikenella corrodens using polyacrylamide gel electrophoresis. J. Clin. Microbiol. 24: 562–565.PubMedPubMedCentralGoogle Scholar
  40. Tanner, A. 1987. Media for cultivation of Eikenella corrodens and formate and fumarate requiring species of oral bacteria. Oral Microbiol. Immunol. 2: 187–189.Google Scholar
  41. Tanner, A. C. R., S. Badger, C.-H. Lai, M. A. Listgarten, R. A. Visconti, and S. S. Socransky, 1981. Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 432–445.Google Scholar
  42. Tanner, A. C. R., J. L. Dzink, J L Ebersole, and S. S. Socransky, 1987. Wolinella recta, Campylobacter conci-sus, Bacteroides gracilis, and Eikenella corrodens from periodontal lesions. J. Periodontol. Res. 22: 327–330.Google Scholar
  43. Tanner, A. C. R., C. Haffer, G. T. Bratthall, R. A. Visconti, and S. S. Socransky., 1979. A study of the bacteria associated with advancing periodontal disease in pian. J. Clin. Periodontal. 6: 278–307.CrossRefGoogle Scholar
  44. Tanner, A. C. R., M. A. Listgarten, and J. L. Ebersole, 1984. Wolinella curva sp. nov.: “Vibrio succinogenes” of human origin. Int. J. Syst. Bacteriol. 34: 275–282.Google Scholar
  45. Tanner, A. C. R., M. N. Strzempko, C. A. Belsky, and G. A. McKinley, 1985. API ZYM and API An-Ident reactions of fastidious oral Gram-negative species. J. Clin. Microbiol. 22: 333–335.PubMedPubMedCentralGoogle Scholar
  46. Teraguchi, S., and T. C. Hollocher, 1989. Purification and some characteristics of a cytochrome C-containing nitrous oxide reductase from Wolinella succinogenes. J. Biol. Chem. 264: 1972–1979.PubMedGoogle Scholar
  47. Unden, G., H. Hackenberg, and A. Kroger, 1980. Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vi-brio succinogenes. Biochim. Biophys. Acta. 591: 275–288.PubMedCrossRefGoogle Scholar
  48. Van Dyke, T. E., V. R Jr. Dowell, S. Offenbacher, W. Snyder and T. Hersh, 1986. Potential role of microorganisms isolated from periodontal lesions in the pathogenesis of inflammatory bowel disease. Infect. Immunol. 53: 671–677.Google Scholar
  49. Van Palenstein Helderman, W. H., and I. Rosman, 1976. Hydrogen-dependent organisms from the human gingival crevice resembling Vibrio succinogenes. Antonie van Leeuwenhock J. Microbiol. Serol. 42: 107–118.Google Scholar
  50. Werner-Felmayer, G., B. Guggenheim, and R. Gmur, 1988. Production and characterization of monoclonal antibodies against Bacteroides forsythus and Wolinella recta. J. Dent. Res. 67: 548–553.PubMedCrossRefGoogle Scholar
  51. Wolin, M. J., E. A. Wolin, and N. J. Jacobs, 1961. Cytochrome-producing anaerobic vibrio, Vibrio succinogenes sp. n. J. Bacteriol. 81: 911–917.Google Scholar
  52. Wu, M.-C., Arimura, G. K., and Yunis, A. A, 1978. Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. Int. J. Cancer, 22: 728–733.PubMedCrossRefGoogle Scholar
  53. Yoshinari, T., 1980. N20 reduction by Vibrio succinogenes. Appl. Environ. Microbiol. 39: 81–84.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Anne Tanner
  • Bruce J. Paster

There are no affiliations available

Personalised recommendations