Cochlear Blood Flow

  • Josef M. Miller
  • Alfred L. Nuttall
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 107)


Studies of the cochlear vasculature and cochlear blood flow (CBF) have been of major interest to hearing scientists and otologists for more than a century. Throughout most of that time, this area of research has represented a major technical frustration. From a physiological perspective, it has long been known that the resting and evoked responses of the sensorineural epithelium of the inner ear, as well as its development and maintenance, depend upon the homeostatic environment of the cochlea. The exquisite sensitivity of this receptor to changes in oxygen [1–5] was an early indication of the dominant role of CBF. The recent discovery of a class of metabolically dependent processes determining the micromechanical properties of the inner ear and resulting frequency tuning of the receptor cells has placed greater emphasis on the importance of CBF (see for example [6])


Noise Exposure Systemic Blood Pressure Round Window Stria Vascularis Sudden Hearing Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davis H., B.H. Deatherage, B. Rosenblut, C. Fernandez, R. Kimura, and C.A. Smith. 1958. Modification of cochlear potentials produced by streptomycin poisoning and be extensive venous obstruction. Laryngoscope 68:596–627.PubMedGoogle Scholar
  2. 2.
    Misrahy, G. A., E.W. Shinabarger, and J. E. Arnold. 1958. Changes in cochlear endolymphatic oxygen availability, actin potential, and micro-phonics during and following asphyxia, hypoxia and exposure to loud sounds. J Acoust Soc Am 30:701–704.CrossRefGoogle Scholar
  3. 3.
    Konishi, T., R.A. Butler, and C. Fernandez. 1961. Effects of anoxia on cochlear potentials. J Acoust Soc Am 33:349–356.CrossRefGoogle Scholar
  4. 4.
    Nuttall, A.L., and M. Lawrence. 1980. Endocochlear potential and scala media oxygen tension duringpartial anoxia. Am J Otol 1:147–153.CrossRefGoogle Scholar
  5. 5.
    Thalmann, R., T. Miyoshi, and E. Rauchbach. 1973. Biochemical correlates of inner ear ischemia. In Vascular Disorders in Hearing Defects, de Lorenzo ed. Baltimore: University Park pp 219–245.Google Scholar
  6. 6.
    Zenner, H.P. 1988. Motility of outer hair cells as an active, actin-mediated process. Acta Otolaryngol [Stockh] 105:39–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Miller, J.M., E. Hultcrantz, S.O. Short, and A.L. Nuttall. 1986. Pharmacological effects on cochlear blood flow measured with the laser Doppler technique. Scand Audiol Suppl 26:11–20.PubMedGoogle Scholar
  8. 8.
    Short, S. O., P.C. Goodwin, J.N. Kaplan, and J.M. Miller. 1985. Measuring cochlear blood flow with laser Doppler spectroscopy. J Otolaryngol Head Neck Surg 43:786–793.Google Scholar
  9. 9.
    Cole, R. R., and R. A. Jahrdoerfer. 1988. Sudden hearing loss: An update. Am J Otol 9:211–215.PubMedGoogle Scholar
  10. 10.
    Kellerhals, B., F. Hippert, and C.R. Pfaltz. 1971. Treatment of acute acoustic trauma with low molecular weight dextran. Pract Oto Rhinol Laryngol 33:260–264.Google Scholar
  11. 11.
    Fisch, U. 1983. Management of sudden deafness. Otolaryngol Head Neck Surg 91:3–8.PubMedGoogle Scholar
  12. 12.
    Gieger, H.L. 1979. Therapy of sudden deafness with 02–0O2 inhalation. HNO 27:10–19.Google Scholar
  13. 13.
    Axelsson, A. 1968. The vascular anatomy of the cochlea in the guinea pig and in man. Acta Otolaryngol (Stockh) Suppl 243:1–143.Google Scholar
  14. 14.
    Hawkins, J.E. Jr., and L-G. Johnsson. 1968. Light microscopic observations of the inner ear in man and monkey. Ann Otol 77:608–629.Google Scholar
  15. 15.
    Axelsson, A., A. Ryan, and N. Woolf. 1986. The early postnatal development of the cochlear vasculature in the gerbil. Acta Otolaryngol [Stockh] 101:75–87.PubMedCrossRefGoogle Scholar
  16. 16.
    Johnsson, L-G., and J.E. Hawkins, Jr. 1972. Vascular changes in the human inner ear associated with aging. Ann Otol Rhinol Laryngol 81:364–376.PubMedGoogle Scholar
  17. 17.
    Jaffe, P. F. 1975. Hypercoagulation and other causes of sudden hearing loss. Otolaryngol Clin North Am 8:395–403.PubMedGoogle Scholar
  18. 18.
    Tange, R. A., and J.L. Bernhard. 1981. A cochlear vascular anomaly in a patient with hearing loss and tinnitus. Arch Otorhinolaryngol 233:177–125.Google Scholar
  19. 19.
    Axelsson, A., and D. Vertes. 1982. Histological findings in cochlear vessels after noise. In New Perspective on Noise-Induced Hearing Loss, Hammernik R.P., Henderson, D., Salvi, R. eds. New York: Raven Press, pp 49–67.Google Scholar
  20. 20.
    Vertes, D., and A. Axelsson. 1979. Methodological aspects of some inner ear vascular techniques. Acta Otolaryngol [Stockh] 88:328–334.PubMedCrossRefGoogle Scholar
  21. 21.
    Weille, F.L., S.R. Gargano, R. Pfister, D. Martinez, and J.W. Irwin. 1954. Circulation of the spiral ligament and stria vascularis of living guinea pig. Experimental study. Arch Otolaryngol 59: 731–738.CrossRefGoogle Scholar
  22. 22.
    Perlman, H. B., and R.S. Kimura. 1955. Observation of the living blood vessels of the cochlea. Ann Otol Rhinol Laryngol 64:1176–1192.PubMedGoogle Scholar
  23. 23.
    Nomura, Y. 1961. Observations on the microcirculation of the cochlea. Ann Otol 70:1037–1054.Google Scholar
  24. 24.
    Costa, O., and P.-I. Branemark. 1970. Microvascular physiology of the cochlea. Adv Microcirc 3:108–114.Google Scholar
  25. 25.
    Costa, O., and P.-I. Branemark. 1970. Vital microscopic evaluation of the microvessels of the cochlea. Adv Microcirc 3:96–107.Google Scholar
  26. 26.
    Intaglietta, M., and W.R. Tompkins. 1972. On-line measurement of microvascular dimensions by television microscopy. J Appl Physiol 32:546–551.PubMedGoogle Scholar
  27. 27.
    Rhodin, J. A. G., H. Wayland, and Y. Makamura. 1974. Combined intravital fluorescence microscopy and electron microscopy for studying vascular permeability. Proceedings of the Symposium at the Eighth European Conference on Microcirculation. Le Touquet, France. In Modern Methods in Microcirculatory Research, California Institute of Technology.Google Scholar
  28. 28.
    Ellis, C. G., R. G. A. Safranyos, and A. C. Groom. 1983. Television-computer method for in vivo measurement of capillary diameter, based on the passage of red cells. Microvasc Res 26:139–150.PubMedCrossRefGoogle Scholar
  29. 29.
    Nuttall, A. L. 1986. Distribution of red blood cell flow velocities in capillaries of the guinea pig cochlea. 23rd Workshop on Inner Ear Biology, Berlin (abstract).Google Scholar
  30. 30.
    Nuttall, A. L. 1986. Intravital microscopy for measurement of blood cell velocities in the cochlea. Ninth Midwinter Research Meeting of the Association for Research in Otolaryngology, Clearwater Beach, FL, February, pp 43–44.Google Scholar
  31. 31.
    Miles, F. P., and A. L. Nuttall. 1988. In vivo capillary diameters in the stria vascularis and spiral ligament of the guinea pig cochlea. Hearing Res 33:191–200.CrossRefGoogle Scholar
  32. 32.
    Suga, F., and J.B. Snow. 1969. Cholinergic control of cochlear blood flow. Ann Otol Rhinol Laryngol 78:1081–1090.PubMedGoogle Scholar
  33. 33.
    Suga, F., and J.B. Snow. 1969. Adrenergic control of cochlear blood flow. Ann Otol Rhinol Laryngol 78:358–374.PubMedGoogle Scholar
  34. 34.
    Nuttall, A. L. 1988. Cochlear blood flow: Measurement techniques. Am J Otolaryngol 9:291–301.PubMedCrossRefGoogle Scholar
  35. 35.
    Miller, J. M., N.J. Marks, and P.C. Goodwin. 1983. Laser Doppler measurements of cochlear blood flow. Hearing Res 11:385–394.CrossRefGoogle Scholar
  36. 36.
    Miller, J. M., P.C. Goodwin, and N.J. Marks. 1984. Inner ear blood flow measured with a laser Doppler system. Arch Otolaryngol 111:305–308.Google Scholar
  37. 37.
    Goodwin, P. C., J.M. Miller, H. A. Dengerink, J.N. Wright, and A. Axelsson. 1984. The laser Doppler: A non-invasive measure of cochlear blood flow. Acta Otolaryngol [Stockh] 98:403–412.PubMedCrossRefGoogle Scholar
  38. 38.
    Dengerink, H. A., A. Axelsson, J.M. Miller, and J.W. Wright. 1984. The effect of noise and carbogen on cochlear vasculature. Acta Otolaryngol 98:81–88.PubMedCrossRefGoogle Scholar
  39. 39.
    Miller, J. M., E. Hultcrantz, S. O. Short, and A. L. Nuttall. 1985. Pharmacological effects of cochlear blood flow (measured with the laser Doppler technique). Abstracts of the Third International Meeting of Medical Audiologists, Visby, Sweden.Google Scholar
  40. 40.
    Wright, J. W., H. A. Dengerink, J.M. Miller, and P.C. Goodwin. 1985. Potential role of angiotensin II in noise-induced increases in inner ear blood flow. Hearing Res 17:41–46.CrossRefGoogle Scholar
  41. 41.
    Dengerink, H. A., J.W. Wright, J.M. Miller, and P.C. Goodwin. 1985. The effects of nicotine on laser Doppler measures of cochlear blood flow. Hearing Res 20:31–36.CrossRefGoogle Scholar
  42. 42.
    Sillman, J.S., M.J. LaRouere, A.L. Nuttall, M. Lawrence, and J.M. Miller. 1988. Recent advances in cochlear blood flow measurements. Ann Otol Rhinol Laryngol 97:1–8.PubMedGoogle Scholar
  43. 43.
    Bonner, R., and R. Nossal. 1981. Model for laser Doppler measurements of blood flow in tissue. Appl Optics 20:2097–2107.CrossRefGoogle Scholar
  44. 44.
    Bonner, R. F., T.R. Clem, P. D. Bowen, and R.L. Bowman. 1981. Laser-Doppler continuous real-time monitor of pulsatile and mean blood flow in tissue microcirculation. In Scattering Techniques Applied to Supramolecular and Non-equilibrium Systems, Chew, S.H., Chu, B., Nossal, R. eds. New York: Plenum Press, pp 685–701.CrossRefGoogle Scholar
  45. 45.
    Nilsson, G.E., T. Tenland, and P. A. Oberg. 1980. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604.PubMedCrossRefGoogle Scholar
  46. 46.
    Kvietys, P.R., A.P. Shepherd, and D.N. Granger. 1985. Laser-Doppler, H2 clearance, and microsphere estimates of mucosal blood flow. Am J Physiol 249:G221–G227.PubMedGoogle Scholar
  47. 47.
    Johansson, K., H. Ahn, J. Lindhagen, and O. Lundgren. 1987. Tissue penetration and measuring depth of laser Doppler flowmetry in the gastrointestinal application. Scand J Gastroenterol 29(9):1081–1088.CrossRefGoogle Scholar
  48. 48.
    Nilsson, G. E., T. Tenland, and P. A. Oberg. 1980. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604.PubMedCrossRefGoogle Scholar
  49. 49.
    Holmstrom, A. and D.H. Lewis. 1983. Regional blood flow in skeletal muscle after high-energy trauma: An experimental study in pigs, using a new laser Doppler technique and radioactive microspheres. Acta Chir Scand 149:453–458.PubMedGoogle Scholar
  50. 50.
    Smits, G.J., R.J. Roman, and J.H. Lombard. 1986. Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J Appl Physiol 61(2):666–672.PubMedGoogle Scholar
  51. 51.
    Swiontkowski, M. F., S. Tepic, S. M. Perren, R. Moor, R. Ganz, and B. A. Rahn. 1986. Laser Doppler flowmetry for bone blood flow measurement: Correlation with microsphere estimates and evaluation of the effect of intracapsular pressure on femoral head blood flow. J Orthopaedic Res 4:362–371.CrossRefGoogle Scholar
  52. 52.
    Neufeld, G. R., S. R. Galante, J.M. Whang, D. DeVries, J. E. Baumgardner, D.J. Graves, and J. A. Quinn. 1988. Skin blood flow from gas transport: Helium xenon and laser Doppler compared. Microvasc Res 35:143–152.PubMedCrossRefGoogle Scholar
  53. 53.
    Maass, B., and J. Kellner. 1984. Hydrogen clearance and cochlear microcirculation at different levels of blood pressure. Arch Otorhinolaryngol 240:295–310.PubMedGoogle Scholar
  54. 54.
    Maass, B., and D. Ludwig. 1984. Effect of pentoxifylline (‘Trental’) on cochlear blood flow as measured by hydrogen wash-out. Current Med Res Opinion 9:52–55.CrossRefGoogle Scholar
  55. 55.
    Ryan, A. F., A. Axelsson, R. Myers, and N.K. Woolf. 1988. Changes in cochlear blood flow during acoustic stimulation as determined by 14C-iodoantipyrine autoradiography. Acta Otolaryngol [Stockh] 105(3–4):232–241.PubMedCrossRefGoogle Scholar
  56. 56.
    Nuttall, A.L., E. Hultcrantz, H.-C. Larsen, and C. Angelborg. 1987. Cochlear blood flow increases after systemic hemodilution: Comparison of simultaneous laser Doppler flowmetry and radioactive microspheres measurements. Hearing Res 34:215–224.CrossRefGoogle Scholar
  57. 57.
    Hultcrantz, E., P.R. Thorne, and A. L. Nuttall. 1986. The influence of cervical sympathetic stimulation on laser-Doppler blood flow measurements from the cochlea. 23rd Workshop on Inner Ear Biology, Berlin, DDR, September.Google Scholar
  58. 58.
    Hultcrantz, E., and A.L. Nuttall. 1986. Effect of hemodilution on cochlear blood flow measured by laser Doppler flowmetry. Am J Otolaryngol 8:16–22.CrossRefGoogle Scholar
  59. 59.
    Nuttall, A. L., J. Warner, J.N. Brown, M. Griffiths, E. Hultcrantz. 1988. Estimation of mean capillary size in the guinea pig cochlea from the size distribution of microspheres. XV European Conference for Microcirculation, Maastricht, The Netherlands.Google Scholar
  60. 60..
    LaRouere, M.J., J.S. Sillman, A. L. Nuttall, and J.M. Miller. A comparison of laser Doppler and intravital microscopy measures of cochlear blood flow. Am Otolaryngol Head Neck Surg, in press.Google Scholar
  61. 61.
    Duling, B.R., and C. Desjardins. 1987. Capillary hematocrit-What does it mean? News Int Physiol Soc 2:66–69.Google Scholar
  62. 62.
    McLain, D.H. 1974. Drawing contours from arbitrary data points. Computer J 17:318–324.CrossRefGoogle Scholar
  63. 63.
    Sarelius, I.H., and B.R. Duling. 1982. Direct measurement of microvessel hematocrit, red cell flux, velocity. and transit time. Am J Physiol 243:H1018-H1026.PubMedGoogle Scholar
  64. 64.
    Hillerdal, M., B. Jansson, B. Engstrom, et al. Cochlear blood flow in noise-damaged ears. Acta Otolaryngol [Stockh] 104:270–278.Google Scholar
  65. 65.
    Mirhashemi, S. 1987. Microcirculatory effects of normovolemic hemodilution: Analytical and experimental investigations. Dissertation.Google Scholar
  66. 66.
    Maass, B., H. Baumgartl, and D.W. Lubbers. 1976. Lokale pOV2V und pHV2VMessungen mit Nadelelektroden zum Studium der Sauerstoffversorgung und Mikrozirkulation der Innenohres. Arch Otorhinolaryngol 214:109–124.PubMedCrossRefGoogle Scholar
  67. 67.
    Nuttall, A.L., E. Hultcrantz, and M. Lawrence. 1981. Does loud sound influence the intracochlear oxygen tension? Hearing Res 5:285–293.CrossRefGoogle Scholar
  68. 68.
    Thorne, P. R., and A. L. Nuttall. 1987. Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hearing Res 27:1–10.CrossRefGoogle Scholar
  69. 69.
    Thorne, P. R., A. L. Nuttall, F. Scheibe, and J.M. Miller. 1987. Sound-induced artifact in laser Doppler measurements of cochlear blood flow. Hearing Res 31:229–234.CrossRefGoogle Scholar
  70. 70.
    Lamm, K., C. Lamm, H. Lamm, and K. Schumann. 1988. Noise-induced reduction of oxygen tension in the perilymph and simultaneous recording of hearing potentials and blood pressure in guinea pigs. HNO 36:367–372.PubMedGoogle Scholar
  71. 71.
    Angelborg, C., E. Hultcrantz, and M. Beausang-Linder. 1979. The cochlear blood flow in relation to noise and cervical sympathectomy. Adv Otorhinolaryngol 25:41–48.PubMedGoogle Scholar
  72. 72.
    Prazma, J., G.K. Rodgers, and H.C. Pillsbury. 1983. The effect of noise on cochlear blood flow. Abstract Association for Research in Otolaryngology, St. Petersburg, FL, January.Google Scholar
  73. 73.
    Canlon, B., and J. Schacht. 1981. The effect of noise on deoxyglucose uptake into inner ear tissues of the mouse. Arch Otorhinolaryngol 230:171–176.PubMedCrossRefGoogle Scholar
  74. 74.
    Canlon, B. and J. Schacht. 1983. Acoustic stimulation alters deoxyglucose uptake in the mouse cochlea and inferior colliculus. Hearing Res 10:217–226.CrossRefGoogle Scholar
  75. 75.
    Ryan, A. F., F. R. Sharp, N.K. Woolf, and T. M. Davidson. 1983. Deoxyglucose uptake in the cochlea during silence and noise: Localization at the cellular level with T3TH autoradiography. ARO 22:Google Scholar
  76. 76.
    Angelborg, C., A. Axelsson, and H.C. Larsen. 1984. Regional blood flow in the rabbit cochlea. Arch Otolaryngol 110:297–300.PubMedCrossRefGoogle Scholar
  77. 77.
    Angelborg, C., H.C. Larsen, and N. Slepecky. 1985. Regional cochlear blood flow: A study of observations of microspheres in serial sections. Ann Otol 94:181–185.Google Scholar
  78. 78.
    Lorento de No, R. 1937. The sensory endings in the cochlea. Laryngoscope 47:373–377.Google Scholar
  79. 79.
    Smith, C. A. 1951. Capillary areas of the cochlea in the guinea pig. Laryngoscope 61:1073–1095.PubMedCrossRefGoogle Scholar
  80. 80.
    Spoendlin, H., and W. Lichtensteiger. 1966. The adrenergic innervation of the labyrinth. Acta Otolaryngol [Stockh] 61:423–434.PubMedCrossRefGoogle Scholar
  81. 81.
    Densert, O. 1974. Adrenergic innervation in the rabbit cochlea. Acta Otolaryngol [Stockh] 78:345–356.PubMedCrossRefGoogle Scholar
  82. 82.
    Densert, O., and A. Flock. 1963. An electron microscope study of adrenergic innervation of the cochlea. Acta Otolaryngol [Stockh] 56:587–598.CrossRefGoogle Scholar
  83. 83.
    Ohlsén, K. A., A. L. Nuttall, and J.M. Miller. 1989. The influence of adrenergic drugs on the cochlear blood flow. Abstracts of the Midwinter Meeting of the Association for Research in Otolaryngology, vol. 12, pp. 103–104.Google Scholar
  84. 84.
    Hultcrantz E., J. Linder, and C. Angelborg. 1977. Sympathetic effects on cochlear blood flow at different blood pressure levels. INSERM 68:271–278.Google Scholar
  85. 85.
    Cox, J. R. 1980. Hormonal influence on auditory function. Ear Hear 1:219–222.PubMedCrossRefGoogle Scholar
  86. 86.
    Davis, M.J., and Ahroon, W.A. 1982. Fluctuations in susceptibility to noise-induced temporary threshold shift as influenced by the menstrual cycle. J Aud Res 22:173–187.PubMedGoogle Scholar
  87. 87.
    Petiot, J.C., and J.E. Parrot. 1984. Effects of the ovarian and contraceptive cycles on absolute thresholds, auditory fatigue and recovery from temporary threshold shifts at 4 and 6 kHz. Audiology 23:581–598.PubMedCrossRefGoogle Scholar
  88. 88.
    Laugel, G.R., H. A. Dengerink, and J.W. Wright. 1987. Ovarian steroid and vasoconstrictor effects on cochlear blood flow. Hearing Res 51:Google Scholar
  89. 89.
    Guyton, A. C. 1981. Textbook of Medical Physiology, 6th ed. Philadelphia: Saunders.Google Scholar
  90. 90.
    Coyle, P., and D. Heistad. 1986. Blood flow through cerebral co-lateral vessels in hypertensive and normotensive rats. Hypertension 8(II):I167–I171.Google Scholar
  91. 91.
    Granger, H.J., M.E. Schelling, R.E. Lewis, D.C. Zawieja, and C.J. Meininger. 1988. Physiology and pathobiology of the microcirculation. Am J Otolaryngol 9:264–277.PubMedCrossRefGoogle Scholar
  92. 92.
    Larson, H. C. 1982. The effect of intracranial hypertension on cochlear blood flow. Acta Otolaryngol [Stockh] 93:415–419.CrossRefGoogle Scholar
  93. 93.
    Hultcrantz, E., H.C. Larson, and C. Angelborg. 1980. The effects of CO2-breathing on cochlear blood flow. Arch Otorhinolaryngol 228:221–215.Google Scholar
  94. 94.
    Hultcrantz, E., H.C. Larsen, and C. Angelborg. 1980. Effects of the CO2 inhalation on cochlear blood circulation. ORL 42:304–312.PubMedCrossRefGoogle Scholar
  95. 95.
    Miller, J.M., and H. Dengerink. 1988. Control of inner ear blood flow. Am J Otolaryngol 9:302–316.PubMedCrossRefGoogle Scholar
  96. 96.
    Hultcrantz, E. 1988. Clinical treatment of vascular inner ear diseases. Am J Otolaryngol 9:317–322.PubMedCrossRefGoogle Scholar
  97. 97.
    Brown, J.J., J. A. Vernon, and J. A. Fenwick. 1982. Reduction of acoustically-induced auditory impairment by inhalation of carbogen gas. Acta Otolaryngol [Stockh] 93:319–328.PubMedCrossRefGoogle Scholar
  98. 98.
    Joglekar, S.S., D.M. Lipscomb, and G.E. Shambaugh. 1977. Effects of oxygen inhalation on noise-induced threshold shifts in humans and chinchillas. Arch Otolaryngol 103:574–578.PubMedCrossRefGoogle Scholar
  99. 99..
    Sillman, J.S., M.J. LaRouere, R. I. Masta, J.M. Miller, and A. L. Nuttall. Electrically stimulated increases in cochlear blood flow: I. Frequency and intensity effects. Otolaryngol Head Neck Surg, in press.Google Scholar
  100. 100..
    Sillman, J.S., R I. Masta, M.J. LaRouere, A. L. Nuttall, J.M. Miller. Electrically stimulated increases in cochlear blood flow: II. Evidence of neural mediation. Otolaryngol Head Neck Surg, in press.Google Scholar
  101. 101.
    Thorne, P. R., and A. L. Nuttall. 1989. Alterations in oxygenation of cochlear endolymph during loud sound exposure. Acta Otolaryngol [Stockh] 107:71–79.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Josef M. Miller
  • Alfred L. Nuttall

There are no affiliations available

Personalised recommendations