The Renal Tubules in Experimental Diabetes

  • Ruth Rasch
  • Palle Holck
Part of the Topics in Renal Medicine book series (TIRM, volume 6)


Streptozotocin diabetes in rats is considered a good model for studies that cannot be conducted in humans. Diabetic glomerulopathy has been studied extensively in experimental diabetes [1–3]. The following chapter, however, is devoted to different segments of the nephron, i.e., the distal tubule and the juxtaglomerular apparatus. In an attempt to contribute to the elucidation of functional changes in the diabetic kidney, the focus here is on structural abnormalities, which, consequent to their location, could reflect the increase in glomerular filtration rate and the changes in the handling of NaCl.


Insulin Treatment Distal Tubule Experimental Diabetes Diabetic Kidney Distal Convoluted Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rasch R: Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment: kidney size and glomerular volume. Diabetologia 6: 125–128, 1979.CrossRefGoogle Scholar
  2. 2.
    Rasch R: Prevention of diabetic glomerulopathy in streptozotocin diabetic rats by insulin treatment: glomerular basement membrane thickness. Diabetologia 6: 319–324, 1979.CrossRefGoogle Scholar
  3. 3.
    Osterby R: Structural changes in the diabetic kidney. In: Watkins P (ed) Long term complications of diabetes. Eastbourne UK: WB Sanders, 1986.Google Scholar
  4. 4.
    Armanni L: Fünf Autopsien mit histologischen Untersuchungen und klinischer Epicrise. In: Catani A (ed) Der Diabetes Mellitus, 14th edn. Berlin: Denicks, 1877, pp 315–329.Google Scholar
  5. 5.
    Ditcherlein F: Nierenveranderungen bei diabetikeren VEB. Jena: Gustav Fischer, 1969, pp 25–27.Google Scholar
  6. 6.
    Rasch R: Tubular lesions in streptozotocin diabetic rats. Diabetologia 27: 32–37, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Seyer-Hansen K, Hansen J, Gundersen HJG: Renal hypertrophy in experimental diabetes: a morphometric study. Diabetologia 18: 501–505, 1980.PubMedCrossRefGoogle Scholar
  8. 8.
    Rasch R, Norgaard JR: Renal enlargement: studies of 3-H thymidine uptake in diabetic and uninephrectomized rats. Diabetologia 25: 280–287, 1984.CrossRefGoogle Scholar
  9. 9.
    Wald H, Popovzer MM: The effect of streptozotocin-induced diabetes mellitus on urinary excretion of sodium Na,K-ATPase activity, Pflugers Arch 401: 97–100, 1984.PubMedCrossRefGoogle Scholar
  10. 10.
    Ku DD, Meezan E: Increased renal sodium pump and Na,K-adenosine triphosphatase in streptozotocin diabetic. J Pharmacol Exp Ther 229: 664–670, 1984.PubMedGoogle Scholar
  11. 11.
    Rasch R: Kidney Na,K-ATPase activity in streptozotocin rats. Scand J Clin Lab Invest 46: 5962, 1986.CrossRefGoogle Scholar
  12. 12.
    Ku DD, Sellers BM, Meezan E: Development of renal hypertrophy and increased renal Na,KATPase in streptozotocin diabetic rats. Endocrinology 119: 672–679, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    Rasch R: The effect of long term insulin treatment on kidney Na,K-ATPase activity in streptozotocin diabetic rats. Horm Metab Res 18: 494–495, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    Wald H, Scherzer P, Popovitzer MM: Enhanced renal tubular ouabain-sensitive ATPase in streptozotocin diabetes. Am J Physiol 251: F164 - F170, 1986.PubMedGoogle Scholar
  15. 15.
    Rasch R, Holck P: Intercellular spaces in the macula densa region in experimental diabetes and their fast reaction to glucose infusions. Acta Endocrinol (Copenh) [Suppl 275] 112: 37, 1986.Google Scholar
  16. 16.
    Jensen PK, Kristensen KS, Rasch R, Persson AEG: Resetting of the tubuloglomerular feedback mechanism in streptozotocin diabetic rats. Acta Endocrinol (Copenh) [Suppl 275] 112,, 1986.Google Scholar
  17. 17.
    Mogensen CE, Andersen MJF: Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22: 706–712, 1973.PubMedGoogle Scholar
  18. 18.
    Seyer-Hansen K: Renal hypertrophy in experimental diabetes: relationship to severity of diabetes. Diabetologia 13: 141–143, 1977.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson HA, Vera Roman JH: Compensatory renal enlargement: hypertrophy versus hyperplasia. Am J Pathol 49: 1–13, 1966.PubMedGoogle Scholar
  20. 20.
    Gotzsche O, Gundersen HJG, Osterby R: Irreversibility of glomerular basement membrane accumulation despite reversibility of renal hypertrophy with islet transplantation in early experimental diabetes. Diabetes 30: 481–485, 19Google Scholar
  21. 21.
    Ebstein W: Uber Drusenepithelnekrosen beim diabetes Mellitus mit besonderer Beruchsichtigung des diabetischen coma. Dtsch Arch Klin Med 30: 143–185, 1881.Google Scholar
  22. 22.
    Ehrlich D: über das Vorkommen von Glycogen im diabetischen and in normalen Organismus. 2. Klin Med 6:33–46, 1883.Google Scholar
  23. 23.
    Robins SL, Tucker AW: The cause of death in diabetes. N Engl J Med 231: 865–881, 1944.CrossRefGoogle Scholar
  24. 24.
    Strauss I: Contribution a l’etude des lesions histologique du rien dans le diabete sucre. Norm Pathol Arch Physiol [Suppl 3] 6: 322–350, 1885.Google Scholar
  25. 25.
    Ritchie S, Waugh D: The pathology of Armanni-Ebstein diabetic nephropathy. Am. J Pathol 33: 1035–1056, 1957.PubMedGoogle Scholar
  26. 26.
    Oliver J: New directions in renal morphology: a method and its future. Harvey Lect 40: 102–155, 1944.Google Scholar
  27. 27.
    Holck P, Rasch R: Computer-assisted 3-dimensional reconstructions of diabetic and non-diabetic distal tubules. Diabetes Res Clin Pract [Suppl] 1: S246, 1985.Google Scholar
  28. 28.
    Hoick P, Rasch R: Accumulation of glucogen in nuclei of diabetic kidneys. Acta Endocrinol (Copenh) [Suppl 275] 112: 38, 1986.Google Scholar
  29. 29.
    Bader H, Meyer DS: The size of the juxtaglomerular apparatus in diabetic glomerulosclerosis and its correlation with arteriosclerosis and arterial hypertension: a morphometric light microscopic study on human renal biopsies. Clin Nephrol 8: 308–311, 1977.PubMedGoogle Scholar
  30. 30.
    Rasch R, Hoick P: The intercellular spaces in the macula densa region in experimental diabetes and their fast reaction to glucose infusions. Acta Endocrinol (Copenh) [Suppl 275] 112: 37, 1986.Google Scholar
  31. 31.
    Thurau K, Schnermann J, Nagel W, Horster M, Wahl M: Composition of tubular fluid in the macula densa segment as a factor regulating the function of the juxtaglomerular apparatus. Circ Res [Suppl 2] 21: 78–79, 1967.Google Scholar
  32. 32.
    Wright FS: Characteristics of feedback control of glomerular filtration rate. Fed Proc 40: 87–92, 1981.PubMedGoogle Scholar
  33. 33.
    Bell DP, Reddington M: Intracellular calcium in the transmission of tubuloglomerular feedback signals. Am J Physiol 245: F295 — F302, 1983.PubMedGoogle Scholar
  34. 34.
    Briggs JP, Wright FS: Feedback control of glomerular filtration rate: site of effector mechanism. Am J Physiol 236: F40 — F47, 1979.PubMedGoogle Scholar
  35. 35.
    Jensen PK, Christiansen JS, Steven K, Parving H—H: Renal function in streptozotocin diabetic rats. Diabetologia 21: 409–414, 1981.PubMedCrossRefGoogle Scholar
  36. 36.
    Rasch R, Seyer-Hansen K: Streptozotocin diabetes as an animal model in kidney research. In: Agarwal (ed) Streptozotocin: fundamentals and therapy. Amsterdam: Elsevier, North-Holland, 1981.Google Scholar
  37. 37.
    Blantz RC, Pelayo JC: A functional role for the tubuloglomerular feedback mechanism. Kidney Int 25: 739–746, 1984.PubMedCrossRefGoogle Scholar
  38. 38.
    Jorgensen PL: Regulation of the (Na, K) activated ATPase hydrolyzing enzyme system in the rat kidney. II. The effect of aldosterone on the activity of kidneys of adrenalectomized rats. Biochim Biophys Acta 192: 326–334, 1969.PubMedCrossRefGoogle Scholar
  39. 39.
    Ernst SA, Schreiber JH: Ultrastructural localization of Na,K-ATPase in rat and rabbit kidney medulla. J Cell Biol 91: 803–813, 1981.PubMedCrossRefGoogle Scholar
  40. 40.
    DeFronzo RA: The effect of insulin on renal sodium metabolism: a review with clinical implications. Diabetologia 21: 165–171, 1981.PubMedCrossRefGoogle Scholar
  41. 41.
    Kaissling B, Le Hir M: Distal tubular segments of the rabbit kidney after adaption to altered Na-and K-intake. I. Structural changes. Cell Tissue Res 224: 469–492, 1982.PubMedCrossRefGoogle Scholar
  42. 42.
    Schmidt U, Guder U: Sites and enzyme activity along the nephron. Kidney Int 9: 233–242, 1976.PubMedCrossRefGoogle Scholar
  43. 43.
    Greene RJ, King RHM, Thomas PK, Baron DN: Sodium—potassium—ATPase activity in the dorsal root ganglia of rats with streptozotocin-induced diabetes. Diabetologia 28: 104–110, 1985.Google Scholar
  44. 44.
    Ku DD, Sellers BM: Effect of streptozotocin diabetes and insulin treatment on the myocardial pump and contractility of the rat heart. J Pharmacol Exp Ther 222: 395–398, 1982.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1988

Authors and Affiliations

  • Ruth Rasch
  • Palle Holck

There are no affiliations available

Personalised recommendations