Skip to main content

Proton Transfer Reactions

  • Chapter
The Enzyme Catalysis Process

Part of the book series: Progress in Mathematics ((NSSA))

Abstract

Proton (H+) transfers play a central role in many enzymatic reactions.1 A good illustration is provided by serine protease reactions.2–4 In a recent theoretical study4 of the serine protease tripsin-catalyzed hydrolysis of a specific tripeptide substrate, there are no less than four proton transfer steps, beginning with a serine to histidine H+ transfer in the Michaelis complex (Fig. 1) Another example is furnished in a study5, 6 of the reversible isomerization of dihydroxyacetone (DHAP) to glyceraldehyde 3-phosphate (GAP) by the enzyme triose phosphate isomerase (TIM). A key step in the DHAP ⇌ GAP reaction is the proton abstraction by a carboxylate group in Glu 165 of a CH proton in DHAP (Fig. 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., A. Fersht, “Enzyme Structure and Mechanism,” W. H. Freeman, New York, 1985.

    Google Scholar 

  2. D. M. Hayes and P. A. Kollman, in “Catalysis in Chemistry and Biochemistry,.” B. Pullman, ed., Reidel, Dordrecht, 1979. p. 77.

    Google Scholar 

  3. M. J. S. Dewar, Enzyme, 36, 8 (1986).

    Google Scholar 

  4. S. J. Weiner, G. L. Seibel and P. A. Kollman, Prof. Natl. Acad. Sci. USA, 83, 649 ( 1986

    Google Scholar 

  5. G. Alagona, P. DesMeules, C. Ghio and P. A. Kollman, J. Am. Chem. Soc., 106, 3623 (1984).

    Google Scholar 

  6. G. Alagona, C. Ghio and P. A. Kollman, J. Mol. Biol., 91, (1986).

    Google Scholar 

  7. D. Borgis and J. T. Hynes, to be published.

    Google Scholar 

  8. S. Scheiner, Acc. Chem. Res., 18, 174 (1985).

    Google Scholar 

  9. R. D. Gandour and R. L. Schowen, “Transition States of Biochemical Processes,” Plenum, New York, 1978.

    Google Scholar 

  10. F. H. Westheimer, Chem. Rev. 61, 265 (1961).

    Google Scholar 

  11. I. A. Rose, in “The Enzymes,” P. D. Boyer, ed. 3rd Ed., Vol. 2.

    Google Scholar 

  12. See, e.g., B. C. Garrett, D. G. Truhlar, A. F. Wagner and T. Dunning, J. Chem. Phys., 78, 4400 (1983).

    Google Scholar 

  13. R. R. Dogonadze, A. M. Kuznetzov and V. G. Levich, Electrochim. Acta, 134, 1025 (1968).

    Google Scholar 

  14. E. D. German, A. M. Kuznetzov and R. R. Dogonadze, J. Chem. Soc. Faraday UU, 76, 1128 (1980).

    Google Scholar 

  15. J. Ulstrup, “Charge Transfer Professes in Condensed Media,” Springer-Verlag, New York, 1979.

    Google Scholar 

  16. M. Perutz, Proc. Roy. Soc. B167 448 (1967).

    Google Scholar 

  17. A. Warshel, Proc. Nat. Acad. Sci. USA 2, 5259 (1978).

    Google Scholar 

  18. A. Warshel, Biochemistry, 20, 3167 (1981).

    Google Scholar 

  19. E. R. Lippincott and R. Schroeder, J. Chem. Phys., 66, 1099 (1955).

    Google Scholar 

  20. B. O. Roos, Theor. Chim. Acta, 42, 77 (1976).

    Google Scholar 

  21. A. Novack, Struct. and Bonding, 18, 177 (1974).

    Google Scholar 

  22. See, e.g., J. N. L. Connor, Chem. Phys. Lett., 4, 419 (1969).

    Google Scholar 

  23. W. Siebrand, T. A. Wildman and M. Z. Zgierski, J. Am. Chem. Soc., 106 4083 (1984).

    Google Scholar 

  24. See, e.g., J. R. de la Vega, Acc. Chem. R.s., 15, 185 (1982).

    Google Scholar 

  25. A. Warshel, J. Phys. Chem., 86 2218 (1982).

    Google Scholar 

  26. S. Lee, D. Ali and J. T. Hynes, to be published.

    Google Scholar 

  27. T. Carrington and W. H. Miller, J. Chem. Phys., M, 4364 (1986).

    Google Scholar 

  28. S. Lee and J. T. Hynes, J. Chem. Phys., 88, 6853, 6863 (1988).

    Article  Google Scholar 

  29. J. T. Hynes, J. Phys. Chem. 90, 32701 (1986).

    Google Scholar 

  30. W. J. Albery and J. R. Knowles, Biochemistry, 15, 5631 (1976).

    Google Scholar 

  31. J. R. Knowles, Acc. Chem. Res., 10, 105 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borgis, D., Hynes, J.T. (1989). Proton Transfer Reactions. In: Cooper, A., Houben, J.L., Chien, L.C. (eds) The Enzyme Catalysis Process. Progress in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1607-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1607-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1609-2

  • Online ISBN: 978-1-4757-1607-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics