Time Resolved Spectroscopy of GaAs/AlGaAs Quantum Well Structures

  • Ernst O. Göbel
Part of the NATO ASI Series book series (NSSB, volume 189)

Abstract

Optical spectroscopic techniques like absorption, photoluminescence, and photoluminescence excitation spectroscopy are widely used to characterize and investigate the properties of quantum wells (QW) and provide significant information on the electronic structure of the respective samples. Conclusions on the dynamics of nonequilibrium carriers, however, generally cannot be drawn from stationary experiments but require time resolved spectroscopy techniques. The dependence of the fundamental relaxation and recombination processes on the dimensionality, i.e. the thickness LZ and Lb of the quantum well and barrier layers, respectively, is one of the key questions as far as QW are considered. In addition, new relaxation processes come into play in QW, which are not present in bulk material, like carrier trapping from the barriers into the QW, intersubband scattering between states with different quantum number, and intervalley scattering including spatially seperated bands (real space transfer).

Keywords

Recombination GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.T.Tsang, Appl. Phys. Lett. 39, 134 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    J. Feldmann, G. Peter, E.O. Göbel, K. Leo, H.-J. Polland, K. Ploog, K. Fujiwara, T. Nakayama, Appl. Phys. Lett. 51, 226 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    H.-J. Polland, K. Leo, K. Ploog, J. Feldmann, G. Peter, E.O. Göbel, K. Fujiwara, T. Nakayama, Solid Sate Electr. 31, 341 (1988)ADSCrossRefGoogle Scholar
  4. 4.
    Recent results on hot carrier cooling in GaAs QW can be found e.g. in: K. Leo, W.W. Rühle, H.-J. Queisser, K. Ploog, Appl. Phys. A 45, 35 (1988)Google Scholar
  5. 5.
    R.L. Greene, K.K. Bajaj, Sol. State Commun. 45, 831 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    P. Dawson, B.A. Wilson, C.W. Tu, R.C. Miller, Appl. Phys. Lett.48,541 (198)Google Scholar
  7. 7.
    P. Dawson, K.J. Moore, C.T. Foxon, SPIE, 782 Quantum Well and Superlattice Physics, 208 (1987)Google Scholar
  8. 8.
    E. Finkmann, M.O. Sturge, M.-H. Meynadier, R.E. Nahory, M.C.Tamargo, D.M. Hwang, C.C. Chang, Journ. Luminesc. 39, 57 (1987)ADSCrossRefGoogle Scholar
  9. 9.
    K.K. Bajaj, same issueGoogle Scholar
  10. 10.
    V.C. Chang, same issueGoogle Scholar
  11. 11.
    Y. Masumoto, M. Matsuura, S. Tarucha, H. Okamoto, Phys. Rev. B52, 4275 (1985)Google Scholar
  12. 12.
    J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, R.J. Elliott, Phys. Rev. Lett. 59, 2337 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegman, T.H. Wood, C.A. Burrus, Phys. Rev. Lett. 53, 2173 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    H.-J. Polland, L. Schultheis, J. Kuhl, E.O. Göbel, C.W. Tu, Phys. Rev. Lett. 55 2610 (1985)ADSCrossRefGoogle Scholar
  15. 15.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. B32, 1043 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, Phys. Rev. B28, 3241 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Brum, G. Bastard, Phys. Rev. B31, 3893 (1985)ADSGoogle Scholar
  18. 18.
    G.O. Sanders, K.K. Bajaj, Phys. Rev. B35, 2308 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    H.-J. Polland, K.Köhler, L. Schultheis, J. K.hl, E.O. Göbel, C.W. Tu, Superlattices & Microstructures 2, 309 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    see e.g. R.L. Fork, C.H. Brito Cruz, P.C. Becker, C.V. Shank, Optics Lett. 12, 4403 (1987)CrossRefGoogle Scholar
  21. 21.
    see e.g. W.H. Knox, D.S. Chemla,G. Livescu, Solid State Electr. 31, 425 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Ernst O. Göbel
    • 1
  1. 1.Fachbereich PhysikPhilipps-UniversitätMarburgFed. Rep. Germany

Personalised recommendations