Hot Electron Effects in Microstructures

  • P. Lugli
Part of the NATO ASI Series book series (NSSB, volume 189)

Abstract

A series of new devices generically called “hot electron transistors” is based on the idea of improving the device performance by injecting fast electrons into thin base regions. We present here a theoretical study, based on a Monte Carlo simulation, of the characteristic energy and momentum losses of hot electrons injected into a doped region, as found for example in the planar doped barrier (PDB) and in the tunneling hot electron transfer amplifier (THETA) devices. The interaction between the injected electrons and the background of cold carriers is shown to be a very effective channel of dissipation. The full self-consistent simulation of the THETA device is also presented.

Keywords

Random Phase Approximation Direct Monte Carlo Simulation Resonant Tunneling Pauli Exclusion Principle Momentum Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Hayes, A.F.J. Levi and W. Wiegmann, El.Lett. 20, 851 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    M. Heilblum, Sol. State Electr. 24, 343 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    M. A. Hollis, S. C. Palmateer, L. F. Eastmann, H. V. Dandekar, and P. M. Smith, IEEE Electron Dev. Lett., EDL4, 440 (1983)Google Scholar
  5. 5.
    B.B. Varga, Phys. Rev. 137. 1896 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    M.E. Kim, A. Das, and S.D. Centuria, Phys. Rev. B18, 6890 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    D. Bohm, and D. Pines, Phys. Rev. 92, 609 (1953)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    O. Madelung, Introduction to Solid State Physics, ( Springer, Berlin ), 1978CrossRefGoogle Scholar
  9. 9.
    P. Lugli, Ph. D. Dissertation, Colorado State University (1985)Google Scholar
  10. 10.
    S.E. Kumenov, and V.I. Perel, Sov. Phys. Semicon. 16, 1982 (1982)Google Scholar
  11. 11.
    B.I. Davidov, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 1, Izd. AN SSR (1958)Google Scholar
  12. 12.
    H. Ehrenreich, J. Phys. Chem. Solids 8, 1996 (1965)Google Scholar
  13. 13.
    A. Mooradian, and G.B. Wright, Phys. Rev. Lett. 16, 999 (1966)ADSCrossRefGoogle Scholar
  14. 14.
    P.A. Wolf, in Proc. Int. Conf. Light Scatt. Spectra Solids, ( Speinger, Berlin ), 1969Google Scholar
  15. 15.
    P.Lugli and D.K.Ferry, Physica B 129, 532 (1985)CrossRefGoogle Scholar
  16. 16.
    P.Lugli and D.K.Ferry, IEEE El.Dev.Lett. EDL6, 25 (1985)Google Scholar
  17. 17.
    J. Y. Tang, and K. Hess, IEEE Trans. Electron Dev. ED-29, 1906 (1982)Google Scholar
  18. 18.
    F. Antonelli, IBM European Center for Scientific and Engineering Computing Technical Report (1987)Google Scholar
  19. 19.
    F. Antonelli, and P. Lugli, in Proc. of XVII European Solid State Device Research Conference ESSDERC87, Eds. P. Calzolari and G. Soncini, p. 177, Tecnoprint, Bologna (1987)Google Scholar
  20. 20.
    S. Bosi, and C. Jacoboni, J. Phys. C. 9, 315 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    P. Lugli, and D. K. Ferry, IEEE Trans. Electron Dev. ED-6, 25 (1985)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Lugli
    • 1
  1. 1.Dipartimento di Ingegneria MeccanicaII Università di RomaRomaItaly

Personalised recommendations