Solvation of Alkali Halides in Alcohol Clusters

  • T. P. Martin
  • T. Bergmann


The strong electrostatic interaction between Li+ and I- ions is screened in the presence of polar solvent molecules, eventually resulting in the dissociation of Li+-I-ion pairs. In order to better understand this-solvation process, mass spectrometry experiments and total energy calculations have been carried out on alcohol clusters containing varying amounts of LiI. Clusters of a given size are found to possess a large number of stable configurations all of which are present, simultaneously, in a cluster beam. The form of the most abundant cluster changes with changing temperature in order to simultaneously minimize energy and maximize entropy. Despite this complexity, several general conclusions can be made. Solvation in clusters occurs in two stages with increasing alcohol content. First, ion pairs are isolated from one another. The ion pairs then dissociate into individual ions. At low temperatures the most stable configurations correspond to evenly distributed, symmetric arrangements of alcohol molecules about Li ions. When the number of alcohol molecules per Li ion reaches the value 4, the Li-I distance increases abruptly and the alkali halide fragment “dissolves” in the cluster.


Stable Configuration Methanol Molecule Alcohol Molecule Alkali Halide Cluster Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See conference proceedings published in: Surf. Sci. 106 (1981); 156 (1985); Z. Phys. D (1986).Google Scholar
  2. 2.
    A. Ding, J. H. Futrell, R. A. Cassidy, L. Cordis and J. Hesslich, Surf. Sci. 156:282 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    A.J. Stace, Chem. Phys. Lett. 113:355 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    H.P. Birkhofer, H. Haberland, M. Winterer and Dr.R. Worsnop, Ber. Bunsenges, Phys. Chem. 88:207 (1984).CrossRefGoogle Scholar
  5. 5.
    J. Diefenbach and T.P. Martin, J. Chem. Phys. 83; 2238 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    E.A. Rohlfing, D.M. Cox, R. Petkovic-Loton, and A. Kaldor, J. Phys. Chem. 88: 6227 (1984).CrossRefGoogle Scholar
  7. 7.
    M.M. Kappes, P. Radi, M. Schar and E. Schumacher, Chem. Phys. Lett. 119: 11 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    T.P. Martin, J. Chem. Phys. 83: 78 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    C. Brechignac, Ph. Cahuzac and J. Ph. Roux, Chem. Phys. Letters 127: 445 (1986).ADSCrossRefGoogle Scholar
  10. 10.
    D. Schild, R. Pflaum, K. Sattler, E. Recknagel, submitted for publication.Google Scholar
  11. 11.
    T.P. Martin, J. Chem. Phys. 80:170 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Banavar and J.C. Phillips, Phys. Rev. B 28:4716 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    M.R. Hoare, Ann. New York Acad. Sci. 279:186 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    J. Gspann, Physics of Electronic and Atomic Collisions, S. Datz (ed.), North-Holland, 1982, p. 79.Google Scholar
  15. 15.
    H. Buchenau, R. Götting, J.R. Minuth, A. Scheidemann, and J. P. Toennies in: Unsteady Fluid Motions, ed. F. Obermaier, G. E. A. Meier, Springer Lecture Notes in Physics (1985).Google Scholar
  16. 16.
    J. Farges, B. Raoult and G. Torchet, J. Chem. Phys. 59: 3454 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    U. Even and J. Jortner, J. Chem. Phys. 78:3445 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    J. Jortner, Ber. Bunsenges, Phys. Chem. 88:188 (1984)CrossRefGoogle Scholar
  19. 19.
    H. Haberland, H.G. Schindler and D.R. Worsnop, Ber. Bunsenges. Phys. Chem. 88: 270 (1984).CrossRefGoogle Scholar
  20. 20.
    B.M. Smirov, Sov. Phys. Usp. 20 :119 (1977).ADSCrossRefGoogle Scholar
  21. 21.
    R.M. Lawrence and R.F. Kruh, J. Chem. Phys. 47:4758 (1967).ADSCrossRefGoogle Scholar
  22. 22.
    J. From, E. Clementi and R.O. Watts, J. Chem. Phys. 62:1388 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    J.W. Kress, E. Clementi, J.J. Kozak and M.E. Schwartz, J. Chem. Phys. 63:3907 (1975).ADSCrossRefGoogle Scholar
  24. 24.
    C.L. Briant and J.J. Burton, J. Chem. Phys. 64:2888 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    I.N. Tang, M.S. Lian and A.W. Castleman, Jr., J. Chem. Phys. 65:4022 (1976).ADSCrossRefGoogle Scholar
  26. 26.
    Gy. I. Szasz, K. Heinzinger and G. Palinkas, Chem. Phys. Letters 78:194 (1981).ADSCrossRefGoogle Scholar
  27. 27.
    C.E. Klots, J. Phys. Chem. 85: 3585 (1981).CrossRefGoogle Scholar
  28. 28.
    Gy. I. Szasz, K. Heinzinger and W.O. Riede, Z. Naturforsch. 36a:1067 (1981).ADSGoogle Scholar
  29. 29.
    P.M. Holland and A.W. Castleman, Jr., J. Chem. Phys. 76:4195 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    J. Chandrasekhar, D.C. Spellmeyer and W.L. Jorgensen, J. Am. Chem. Soc. 106:903 (1984).CrossRefGoogle Scholar
  31. 31.
    M.A. Wilson, A. Pohorille and L.R. Pratt, J. Chem. Phys. 83:5832 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Rashin and B. Honig, J. Phys. Chem. 89:5588 (1985).CrossRefGoogle Scholar
  33. 33.
    M. Magnini, M. de Moraes, G. Licheri and G. Piccaluga, J. Chem. Phys. 83:5797 (1985).ADSCrossRefGoogle Scholar
  34. 34.
    H. Shinohara, U. Nagashima, H. Tanaka and N. Nishi, J. Chem. Phys. 83:4183 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    C.A. Deakyne, M. Meot-Ner, C.L. Cambell, M.G. Hughes and S.P. Murphy, J. Chem. Phys. 84:4958 (1986).ADSCrossRefGoogle Scholar
  36. 36.
    J.N. Murrell and E.A. Boucher, “Properties of Liquids and Solutions”; John Wiley and Sons Ltd.: New York, 1982.Google Scholar
  37. 37.
    J.Q. Searcy and J.B. Fenn, J. Chem. Phys. 61:5292 (1974).ADSCrossRefGoogle Scholar
  38. 38.
    J.A. Odutola, R. Viswanathan and T.R. Dyke, J. Am. Chem. Soc. 101, 4788 (1979).CrossRefGoogle Scholar
  39. 39.
    B.D. Kay and A.J.W. Castleman, Jr., J. Phys. Chem. 89, 4867, (1985).CrossRefGoogle Scholar
  40. 40.
    G.D. Stein and J.A. Armstrong, J. Chem. Phys. 58: 1999, (1973).Google Scholar
  41. 41.
    P. Kebarle and A.M. Hogg, J. Chem. Phys. 42, 668 (1965).ADSCrossRefGoogle Scholar
  42. 42.
    For a recent review see: T.D. Märk and A.W. Castleman, Jr., Adv. At. Mol. Phys. 20, 65 (1985).Google Scholar
  43. 43.
    I. Dzichic and P. Kebarle, J. Phys. Chem. 74, 1466 (1970).ADSCrossRefGoogle Scholar
  44. 44.
    A.W. Castleman, Jr., P.M. Holland, D.M. Lindsay and K.I. Peterson, J. Am. Chem. Soc. 100, 6039 (1978).CrossRefGoogle Scholar
  45. 45.
    P. Kebarle, Ann. Rev. Phys. Chem. 28, 445 (1977).ADSCrossRefGoogle Scholar
  46. 46.
    C.M. Banic and J.V. Iribarne, J. Chem. Phys. 83, 6432 (1985).ADSCrossRefGoogle Scholar
  47. 47.
    J. Diefenbach and T.P. Martin, J. Chem. Phys. 83, 4585 (1985).ADSCrossRefGoogle Scholar
  48. 48.
    T.P. Martin, Phys. Rep. 95, 167 (1983).ADSCrossRefGoogle Scholar
  49. 49.
    L.A. Curtiss, J. Chem. Phys. 67, 1144 (1977).ADSCrossRefGoogle Scholar
  50. 50.
    T.A. Renner, G.H. Kucera and M. Blander, J. Chem. Phys. 66, 177 (1977).ADSCrossRefGoogle Scholar
  51. 51.
    H. Kistenmacher, H. Popkie, and E. Clementi, J. Chem. Phys. 58: 5627 (1973).ADSCrossRefGoogle Scholar
  52. 52.
    R.O. Watts, E. Clementi and J. Fromm, J. Chem. Phys. 61, 2550 (1974).ADSCrossRefGoogle Scholar
  53. 53.
    J. Fromm, E. Clementi, R.O. Watts, J. Chem. Phys. 62, 1388, (1975).ADSCrossRefGoogle Scholar
  54. 54.
    J. Snir, R.A. Nemenoff and H.A. Scheraga, J. Phys. Chem. 82, 2497 (1978).CrossRefGoogle Scholar
  55. 55.
    F.T. Marchese, P.K. Mehrotra and D.L. Beveridge, J. Chem. Phys. 86, 2592 (1982).CrossRefGoogle Scholar
  56. 56.
    J. Stoer: Einfuehrung in die Numerische Matehmatik I; 3rd ed. (Springer, Berlin, Heidelberg, 1979).CrossRefGoogle Scholar
  57. 57.
    W. Weppner, W. Welzel, R. Kniep and A. Rabenau, to be published in Angew. Chem.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. P. Martin
    • 1
  • T. Bergmann
    • 1
  1. 1.Max-Planck-Institut fuer FestkoerperforschungStuttgart 80Germany

Personalised recommendations