Skip to main content

Solvation of Alkali Halides in Alcohol Clusters

  • Chapter
Physics and Chemistry of Small Clusters
  • 16 Accesses

Abstract

The strong electrostatic interaction between Li+ and I- ions is screened in the presence of polar solvent molecules, eventually resulting in the dissociation of Li+-I-ion pairs. In order to better understand this-solvation process, mass spectrometry experiments and total energy calculations have been carried out on alcohol clusters containing varying amounts of LiI. Clusters of a given size are found to possess a large number of stable configurations all of which are present, simultaneously, in a cluster beam. The form of the most abundant cluster changes with changing temperature in order to simultaneously minimize energy and maximize entropy. Despite this complexity, several general conclusions can be made. Solvation in clusters occurs in two stages with increasing alcohol content. First, ion pairs are isolated from one another. The ion pairs then dissociate into individual ions. At low temperatures the most stable configurations correspond to evenly distributed, symmetric arrangements of alcohol molecules about Li ions. When the number of alcohol molecules per Li ion reaches the value 4, the Li-I distance increases abruptly and the alkali halide fragment “dissolves” in the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See conference proceedings published in: Surf. Sci. 106 (1981); 156 (1985); Z. Phys. D (1986).

    Google Scholar 

  2. A. Ding, J. H. Futrell, R. A. Cassidy, L. Cordis and J. Hesslich, Surf. Sci. 156:282 (1985).

    Article  ADS  Google Scholar 

  3. A.J. Stace, Chem. Phys. Lett. 113:355 (1985).

    Article  ADS  Google Scholar 

  4. H.P. Birkhofer, H. Haberland, M. Winterer and Dr.R. Worsnop, Ber. Bunsenges, Phys. Chem. 88:207 (1984).

    Article  Google Scholar 

  5. J. Diefenbach and T.P. Martin, J. Chem. Phys. 83; 2238 (1985).

    Article  ADS  Google Scholar 

  6. E.A. Rohlfing, D.M. Cox, R. Petkovic-Loton, and A. Kaldor, J. Phys. Chem. 88: 6227 (1984).

    Article  Google Scholar 

  7. M.M. Kappes, P. Radi, M. Schar and E. Schumacher, Chem. Phys. Lett. 119: 11 (1985).

    Article  ADS  Google Scholar 

  8. T.P. Martin, J. Chem. Phys. 83: 78 (1985).

    Article  ADS  Google Scholar 

  9. C. Brechignac, Ph. Cahuzac and J. Ph. Roux, Chem. Phys. Letters 127: 445 (1986).

    Article  ADS  Google Scholar 

  10. D. Schild, R. Pflaum, K. Sattler, E. Recknagel, submitted for publication.

    Google Scholar 

  11. T.P. Martin, J. Chem. Phys. 80:170 (1984).

    Article  ADS  Google Scholar 

  12. J.R. Banavar and J.C. Phillips, Phys. Rev. B 28:4716 (1983).

    Article  ADS  Google Scholar 

  13. M.R. Hoare, Ann. New York Acad. Sci. 279:186 (1976).

    Article  ADS  Google Scholar 

  14. J. Gspann, Physics of Electronic and Atomic Collisions, S. Datz (ed.), North-Holland, 1982, p. 79.

    Google Scholar 

  15. H. Buchenau, R. Götting, J.R. Minuth, A. Scheidemann, and J. P. Toennies in: Unsteady Fluid Motions, ed. F. Obermaier, G. E. A. Meier, Springer Lecture Notes in Physics (1985).

    Google Scholar 

  16. J. Farges, B. Raoult and G. Torchet, J. Chem. Phys. 59: 3454 (1973).

    Article  ADS  Google Scholar 

  17. U. Even and J. Jortner, J. Chem. Phys. 78:3445 (1983).

    Article  ADS  Google Scholar 

  18. J. Jortner, Ber. Bunsenges, Phys. Chem. 88:188 (1984)

    Article  Google Scholar 

  19. H. Haberland, H.G. Schindler and D.R. Worsnop, Ber. Bunsenges. Phys. Chem. 88: 270 (1984).

    Article  Google Scholar 

  20. B.M. Smirov, Sov. Phys. Usp. 20 :119 (1977).

    Article  ADS  Google Scholar 

  21. R.M. Lawrence and R.F. Kruh, J. Chem. Phys. 47:4758 (1967).

    Article  ADS  Google Scholar 

  22. J. From, E. Clementi and R.O. Watts, J. Chem. Phys. 62:1388 (1975).

    Article  ADS  Google Scholar 

  23. J.W. Kress, E. Clementi, J.J. Kozak and M.E. Schwartz, J. Chem. Phys. 63:3907 (1975).

    Article  ADS  Google Scholar 

  24. C.L. Briant and J.J. Burton, J. Chem. Phys. 64:2888 (1976)

    Article  ADS  Google Scholar 

  25. I.N. Tang, M.S. Lian and A.W. Castleman, Jr., J. Chem. Phys. 65:4022 (1976).

    Article  ADS  Google Scholar 

  26. Gy. I. Szasz, K. Heinzinger and G. Palinkas, Chem. Phys. Letters 78:194 (1981).

    Article  ADS  Google Scholar 

  27. C.E. Klots, J. Phys. Chem. 85: 3585 (1981).

    Article  Google Scholar 

  28. Gy. I. Szasz, K. Heinzinger and W.O. Riede, Z. Naturforsch. 36a:1067 (1981).

    ADS  Google Scholar 

  29. P.M. Holland and A.W. Castleman, Jr., J. Chem. Phys. 76:4195 (1982).

    Article  ADS  Google Scholar 

  30. J. Chandrasekhar, D.C. Spellmeyer and W.L. Jorgensen, J. Am. Chem. Soc. 106:903 (1984).

    Article  Google Scholar 

  31. M.A. Wilson, A. Pohorille and L.R. Pratt, J. Chem. Phys. 83:5832 (1985).

    Article  ADS  Google Scholar 

  32. A.A. Rashin and B. Honig, J. Phys. Chem. 89:5588 (1985).

    Article  Google Scholar 

  33. M. Magnini, M. de Moraes, G. Licheri and G. Piccaluga, J. Chem. Phys. 83:5797 (1985).

    Article  ADS  Google Scholar 

  34. H. Shinohara, U. Nagashima, H. Tanaka and N. Nishi, J. Chem. Phys. 83:4183 (1985).

    Article  ADS  Google Scholar 

  35. C.A. Deakyne, M. Meot-Ner, C.L. Cambell, M.G. Hughes and S.P. Murphy, J. Chem. Phys. 84:4958 (1986).

    Article  ADS  Google Scholar 

  36. J.N. Murrell and E.A. Boucher, “Properties of Liquids and Solutions”; John Wiley and Sons Ltd.: New York, 1982.

    Google Scholar 

  37. J.Q. Searcy and J.B. Fenn, J. Chem. Phys. 61:5292 (1974).

    Article  ADS  Google Scholar 

  38. J.A. Odutola, R. Viswanathan and T.R. Dyke, J. Am. Chem. Soc. 101, 4788 (1979).

    Article  Google Scholar 

  39. B.D. Kay and A.J.W. Castleman, Jr., J. Phys. Chem. 89, 4867, (1985).

    Article  Google Scholar 

  40. G.D. Stein and J.A. Armstrong, J. Chem. Phys. 58: 1999, (1973).

    Google Scholar 

  41. P. Kebarle and A.M. Hogg, J. Chem. Phys. 42, 668 (1965).

    Article  ADS  Google Scholar 

  42. For a recent review see: T.D. Märk and A.W. Castleman, Jr., Adv. At. Mol. Phys. 20, 65 (1985).

    Google Scholar 

  43. I. Dzichic and P. Kebarle, J. Phys. Chem. 74, 1466 (1970).

    Article  ADS  Google Scholar 

  44. A.W. Castleman, Jr., P.M. Holland, D.M. Lindsay and K.I. Peterson, J. Am. Chem. Soc. 100, 6039 (1978).

    Article  Google Scholar 

  45. P. Kebarle, Ann. Rev. Phys. Chem. 28, 445 (1977).

    Article  ADS  Google Scholar 

  46. C.M. Banic and J.V. Iribarne, J. Chem. Phys. 83, 6432 (1985).

    Article  ADS  Google Scholar 

  47. J. Diefenbach and T.P. Martin, J. Chem. Phys. 83, 4585 (1985).

    Article  ADS  Google Scholar 

  48. T.P. Martin, Phys. Rep. 95, 167 (1983).

    Article  ADS  Google Scholar 

  49. L.A. Curtiss, J. Chem. Phys. 67, 1144 (1977).

    Article  ADS  Google Scholar 

  50. T.A. Renner, G.H. Kucera and M. Blander, J. Chem. Phys. 66, 177 (1977).

    Article  ADS  Google Scholar 

  51. H. Kistenmacher, H. Popkie, and E. Clementi, J. Chem. Phys. 58: 5627 (1973).

    Article  ADS  Google Scholar 

  52. R.O. Watts, E. Clementi and J. Fromm, J. Chem. Phys. 61, 2550 (1974).

    Article  ADS  Google Scholar 

  53. J. Fromm, E. Clementi, R.O. Watts, J. Chem. Phys. 62, 1388, (1975).

    Article  ADS  Google Scholar 

  54. J. Snir, R.A. Nemenoff and H.A. Scheraga, J. Phys. Chem. 82, 2497 (1978).

    Article  Google Scholar 

  55. F.T. Marchese, P.K. Mehrotra and D.L. Beveridge, J. Chem. Phys. 86, 2592 (1982).

    Article  Google Scholar 

  56. J. Stoer: Einfuehrung in die Numerische Matehmatik I; 3rd ed. (Springer, Berlin, Heidelberg, 1979).

    Book  Google Scholar 

  57. W. Weppner, W. Welzel, R. Kniep and A. Rabenau, to be published in Angew. Chem.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Martin, T.P., Bergmann, T. (1987). Solvation of Alkali Halides in Alcohol Clusters. In: Jena, P., Rao, B.K., Khanna, S.N. (eds) Physics and Chemistry of Small Clusters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0357-3_89

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0357-3_89

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0359-7

  • Online ISBN: 978-1-4757-0357-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics