Skip to main content

Analysis of the Basis Set Dependency on the Electronic Structure of Nb2

  • Chapter
Physics and Chemistry of Small Clusters

Abstract

The electronic structures of the valence and first excited states for Nb2 have been calculated within the local spin density approximation using the LCAO method. Calculations were done with basis sets of the neutral atom consisting of occupied plus virtual orbitals generated with different occupation numbers of the 4d and 5s orbitals. In addition polarization functions have been included by using the 4d, 5s and 5p functions for ionized atom. Inclusion of the ionized basis is found to be important while the addition of basis functions with changes in occupation numbers for the 4d and 5s electrons do not give any further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.E. Moore, Atomic Energy Levels. NBS Circ. 467 Washington DC (1971).

    Google Scholar 

  2. R.E. Trees, Phys. Rev. 83, 756 (1951);

    Article  ADS  Google Scholar 

  3. R.E. Trees, Phys. Rev. 84, 1089 (1951);

    Article  ADS  Google Scholar 

  4. R.E. Trees, Phys. Rev. 85, 382 (1952).

    Article  ADS  Google Scholar 

  5. R.E. Trees and M.M. Harvey, J. Res. NBS 49, 397 (1952).

    Google Scholar 

  6. J.E. Hansen and B.R. Judd, Comments At. Mol. Phys. 18, 125 (1986).

    Google Scholar 

  7. B.R. Judd, Rep. Prog. Phys. 48, 907 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Armstrong, Theory of the Hyperfine Structure of Free Atoms, Wiley-Interscience, New York (1971).

    Google Scholar 

  9. I. Lindgren and A. Rosen, Case Stud. Atomic Phys. 4, 93 (1974).

    Google Scholar 

  10. G. Olsson and A. Rosen, Physica Scripta, 26, 168 (1982);

    Article  ADS  Google Scholar 

  11. G. Olsson and A. Rosen, Phys. Rev. A25, 658 (1982).

    ADS  Google Scholar 

  12. S. Büttgenbach, Hyperfine Structure in 4d and 5d Shell Atoms, Springer Tracts in Modem Physics, 96 Berlin (1982).

    Google Scholar 

  13. P.E.M. Siegbahn, M.R.A. Blomberg, C.W. Bauschlicher Jr, J. Chem. Phys. 81, 1373 (1984).

    Article  ADS  Google Scholar 

  14. R.E. Smalley, in Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules, The State of the Art, Ed., R.J. Bartlett, D. Reidel Publ. Comp. Dordrecht, Holland 1985. In this review references are given to experimental works on clusters from a number of groups.

    Google Scholar 

  15. G. Olsson, T. Olsson, L. Robertsson and A. Rosen, Physica Scripta, 29, 1 (1984).

    Article  Google Scholar 

  16. J.B. Hopkins, P.R.R. Langridge-Smith, M.D. Morse and R.E. Smalley, J. Chem. Phys. 78, 1627 (1983).

    Article  ADS  Google Scholar 

  17. S.J. Riley, E.K. Parks, L.G. Pobo and S. Wexler, J. Chem. Phys. 79, 2577 (1983).

    Article  ADS  Google Scholar 

  18. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  19. W. Kohn, L.J. Sham; Phys. Rev. A140, 1133 (1970).

    MathSciNet  Google Scholar 

  20. J.P. Dahl and J. Avery, Eds. “Local density approximations in quantum chemistry and solid state physics”, Plenum Press, New York (1984).

    Google Scholar 

  21. U. von Barth, Phys. Rev. A20, 1693 (1979).

    ADS  Google Scholar 

  22. T. Ziegler and A. Rauk, Theo Chim. Acta. 43, 261 (1977).

    Article  Google Scholar 

  23. U. von Barth, L. Hedin, J. Phys. C5, 1629 (1972).

    ADS  Google Scholar 

  24. D.E. Ellis and G. Painter, Phys. Rev. B2, 2887 (1973).

    ADS  Google Scholar 

  25. A. Rosen, D.E. Ellis, H. Adachi and F.W. Averill, J. Chem. Phys. 65, 3629 (1976).

    Article  ADS  Google Scholar 

  26. B. Delley, D.E. Ellis, J. Chem. Phys. 76, 1949 (1982).

    Article  ADS  Google Scholar 

  27. S.P. Walch and C.W. Bauschlicher, Jr., in Comparison of Ab initio Quantum Chemistry with Experiment for Small Molecules, The State of the Art, Ed. R.J. Bartlett, D. Reidel Publ. Comp., Dortrecht., Holland (1985).

    Google Scholar 

  28. G. Seifert, E. Mrosan, H. Müller and P. Ziesche, Phys. Status Solidi 89, K175 (1978).

    Article  ADS  Google Scholar 

  29. H. Müller, Ch. Optiz, G. Seifert, Z. Phys. Chem. Leipzig 263, 1005 (1982).

    Google Scholar 

  30. R.E. Smalley as quoted in Ref. 23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Rosén, A., Wahnström, T. (1987). Analysis of the Basis Set Dependency on the Electronic Structure of Nb2 . In: Jena, P., Rao, B.K., Khanna, S.N. (eds) Physics and Chemistry of Small Clusters. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0357-3_73

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0357-3_73

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0359-7

  • Online ISBN: 978-1-4757-0357-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics