From Metal Clusters to Cluster Metals

  • Günter Schmid
  • Norbert Klein


Ligand stabilized full-shell clusters show a special stability and have been described for the magic numbers 13 and 551. On the other hand, there is no experimental information on the stability of naked full-shell clusters, presumably because there was no possibility to generate those clusters. But numerous papers occupy with the formation and stability of naked full-shell clusters from the theoretical point of view2–12. Two-shell clusters of the type M55L12Cln (M = Au, Rh, L = P (C6H5) 3, n = 6; M = Rh, Ru, L = P (tert-C4H9)3, n = 20; M = Pt, L = As(tert-C4H9) 3, n = 20) for the first time present the occasion of generating naked M13 clusters by peeling off the outer metal shell together with the ligands. The destiny of these micro-clusters should easily been followed up, as only two routes for their stabilization seem open: either they degrade to form normal bulk metal or they aggregate to novel metal modifications with M13 clusters as building blocks.


Metal Atom Cluster Metal Interplanar Spacing Magic Number Black Precipitate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Schmid, Structure and Bonding 62:51 (1985)CrossRefGoogle Scholar
  2. 2.
    B. G. Bagley, Nature 208:674 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    B. G. Bagley, Nature 225:1040 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    B. G. Bagley, J. Cryst. Growth 6:323 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    J. J. Burton, Cat. Rev. Sci. Eng. 9:209 (1974)CrossRefGoogle Scholar
  6. 6.
    A. L. Macky, Acta Cryst. 15:916 (1962)CrossRefGoogle Scholar
  7. 7.
    M. R. Hoare and P. Pal, Nature, Phys. Sci. 236:35 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    J. J. Burton, Phys. Lett. 3:594 (1970)Google Scholar
  9. 9.
    J. J. Burton, Nature 229:335 (1971)ADSCrossRefGoogle Scholar
  10. 10.
    M. R. Hoare and P. Pal, Adv. Phys. 24:645 (1975)ADSCrossRefGoogle Scholar
  11. 11.
    M. R. Hoare, Adv. Chem. Phys. 40:49 (1979)CrossRefGoogle Scholar
  12. 12.
    B. Mutaftschiev, J. de Phys. Colloq. 41:C3 (1980)Google Scholar
  13. 13.
    G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer, G. H. M. Calis, and J. W. A. van der Velden, Chem. Ber. 114:3634 (1981)CrossRefGoogle Scholar
  14. 14.
    G. Schmid, U. Giebel, W. Huster, and A. Schwenk, Inorg. Chim. Acta 85:97 (1984)CrossRefGoogle Scholar
  15. 15.
    L. R. Wallenberg, J. -O. Bovin, and G. Schmid, Srfce. Sce. 156:256 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    G. Schmid and W. Huster, Z. Naturforsch. 41B:1028 (1986)Google Scholar
  17. 17.
    G. Schmid and N. Klein, Angew. Chem. 98:910 (1986)CrossRefGoogle Scholar
  18. 17a.
    G. Schmid and N. Klein, Angew. Chem. Int. Ed. Engl. 25:922 (1986)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Günter Schmid
    • 1
  • Norbert Klein
    • 1
  1. 1.Institut für Anorganische ChemieUniversität EssenEssen 1W.-Germany

Personalised recommendations