Advertisement

A Molecular Dynamics Study of Silicon Clusters

  • Estela Blaisten-Barojas
  • D. Levesque

Abstract

The structural properties of neutral and charged silicon clusters of moderate size were obtained from a molecular dynamics simulation using Stillinger-Weber model potential [Phys.Rev.B 31,5262(1985)]. Cluster equilibrium configurations resulting from quenches initiated at finite temperatures and ended at low temperatures established different growth sequences for neutral and charged clusters. Cooling and heating experiments were carried out showing that the transition from liquid-like systems to solid-like structures is very smooth. A model of an amorphous five layer film is constructed using the 14-atom cluster as elemental building block.

Keywords

Molecular Dynamic Simulation Pair Correlation Function Stable Cluster Neutral Cluster Charged Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Hansen and R.J. Mc Donald, “Theory of Simple Liquids” (Academic Press, New York 1976);Google Scholar
  2. 1a.
    F.F. Abraham, Rep. Prog. Phys. 45, 1113 (1982).ADSCrossRefGoogle Scholar
  3. 2.
    F.H. Stillinger and T.A. Weber, Kinam 3A, 159 (1981);Google Scholar
  4. 2a.
    F.H. Stillinger and T.A. Weber, Phys. Rev. A 25, 978 (1982);ADSCrossRefGoogle Scholar
  5. 2b.
    F.H. Stillinger and T.A. Weber, Phys. Rev. A 28, 2408 (1983).ADSCrossRefGoogle Scholar
  6. 3.
    F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985).ADSCrossRefGoogle Scholar
  7. 4.
    E. Blaisten-Barojas and H.C. Andersen, Surface Sci. 156, 548 (1985);ADSCrossRefGoogle Scholar
  8. 4a.
    E. Blaisten-Barojas, Kinam 6A, 71 (1984).Google Scholar
  9. 5.
    E. Blaisten-Barojas and D. Levesque, Phys. Rev. B 34, 3910 (1986).ADSCrossRefGoogle Scholar
  10. 6.
    P.N. Keating, Phys. Rev. 145, 637 (1986);ADSCrossRefGoogle Scholar
  11. 6a.
    T. Takai, T. Halicioglu and W. Tiller, Scripta Metall. 19, 709 (1985);CrossRefGoogle Scholar
  12. 6b.
    R. Biswas and D.R. Hamann, Phys. Rev. Lett. 55, 2001 (1985);ADSCrossRefGoogle Scholar
  13. 6c.
    J. Tersoff, Phys. Rev. Lett. 56, 632 (1986);ADSCrossRefGoogle Scholar
  14. 6d.
    S. Saito, S. Ohnishi, and S. Sugano, Phys. Rev. B 33, 7036 (1986).ADSCrossRefGoogle Scholar
  15. 7.
    T.P. Martin and H. Schaber, J. Chem. Phys. 83, 855 (1985).ADSCrossRefGoogle Scholar
  16. 8.
    L.A. Bloomfield, R.R. Freemen and W.L. Brown, Phys. Rev. Lett. 54, 2246 (1985).ADSCrossRefGoogle Scholar
  17. 9.
    R.R. Teachout and R.T. Pack, Atomic Data 3, 195 (1971).ADSCrossRefGoogle Scholar
  18. 10.
    L. Verlet, Phys. Rev. 159, 98 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Estela Blaisten-Barojas
    • 1
  • D. Levesque
    • 2
  1. 1.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  2. 2.Laboratoire de Physique Téorique et Hautes EnergiesUniversité de Paris-SudOrsayFrance

Personalised recommendations