Cluster Calculations for Diffusion on and in Transition Metals

  • Jan Andzelm
  • Dennis Salahub


Local Density calculations have been performed, using a Gaussian representation of the wave function and a model potential for the core electrons, for clusters representing a hydrogen atom diffusing through palladium and rhodium and for a CO molecule diffusing over Pd(100).

For the Pd(111) + H system, represented by a ten-atom cluster, the relative energies of the various H-atom sites are correctly given and the calculated diffusion barier (0.32eV) is in encouraging agreement with its experimental counterpart (0.23eV). For rhodium the calculated barrier is much greater (0.91eV). Calculations for rhodium at the palladium lattice spacing (about 2% greater) yield 0.71eV so that the increase relative to palladium is roughly one-third structural and two-thirds electronic.

Several cluster models, containing up to 17 atoms, have been chosen to model the atop (A), bridge (B) and 4-fold centered (C) sites for CO adsorption on Pd(100). The B site is correctly found to be the most stable, followed closely (within — 0.15eV) by C, A being significantly higher (~1.0eV). The molecule stands perpendicular to the surface at all three sites; however, along a diffusion path between B and C it tilts by as much as ~ 20°, showing a tendency for the carbon to point back towards the bridge site. The barrier for diffusion is calculated to be about 0.35eV, a reasonable value.

These “dynamic” results complement previous results on the equilibrium properties (geometries, ionization potentials, vibrational frequencies, nature of the bonding) and further help to delimit the domain of the method.


Adsorption Energy Cluster Model Diffusion Path Bridge Site Gaussian Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Tully, Ann. Rev. Phys. Chenu, 31, 319 (1980);ADSCrossRefGoogle Scholar
  2. 1a.
    D.C. Clary and A.E. DePristo, J. Chem. Phys., 81, 5164 (1984).ADSGoogle Scholar
  3. 2.
    J.-H. Lim and B.J. Garrison, J. Chem. Phys., 80, 2904 (1984);ADSCrossRefGoogle Scholar
  4. 2a.
    C.-Y. Lee and A.E. DePristo; J. Chem. Phys., 84, 485 (1986);ADSCrossRefGoogle Scholar
  5. 2b.
    J.G. Lauderdale and D.G. Truhlar, J. Chem. Phys., 84, 1843 (1986).ADSCrossRefGoogle Scholar
  6. 3.
    D.R. Salahub “Applied Quantum Chemistry” V.H. Smith, K. Morokuma and H.F. Schaefer III eds., Reidel, Dordrecht (1986) p.185 and references therein.Google Scholar
  7. 4.
    J. Andzelm and D.R. Salahub, Intern. J. Quantum Chem., 29, 1091 (1986).CrossRefGoogle Scholar
  8. 5.
    N.A. Baykara, J. Andzelm, D.R. Salahub and S.Z. Baykara, Intern. J. Quantum Chem., 29, 1025 (1986).CrossRefGoogle Scholar
  9. 6.
    A.D. Becke, J. Chem. Phys., 84, 4524 (1986).ADSCrossRefGoogle Scholar
  10. 7.
    D. R. Salahub, Adv. Chem. Phys., 69, (1987), in press, and references therein.Google Scholar
  11. 8.
    D. C. Langreth and M.J. Mehl, Phys. Rev., B28, 1809 (1983).ADSGoogle Scholar
  12. 9.
    A. G. Noumouets and Y.S. Vedula, Surface Sci. Rept. 4, 365 (1985).ADSCrossRefGoogle Scholar
  13. 10.
    R. Lewis and R. Gomer, Surface Sci. 17, 333 (1969).ADSCrossRefGoogle Scholar
  14. 10a.
    M. Tringides and R. Gomer, Surface Sci. 155, 254 (1985).ADSCrossRefGoogle Scholar
  15. 10b.
    J.R. Chen and R. Gomer, Surface Sci. 81, 589 (1979).ADSCrossRefGoogle Scholar
  16. 11.
    R. Viswanathan, D.R. Burgess Jr., P.C. Stair and E. Weitz, J. Vac. Sci. Technol 20, 605 (1982).ADSCrossRefGoogle Scholar
  17. 12.
    S.M. George, A.M. DeSantolo and R.’B. Hall, Surface Sci. 159, L425 (1985).CrossRefGoogle Scholar
  18. 13.
    C.H. Mak, J.L. Brand, A.A. Deckert and S.M. George, J. Chem. Phys. 85, 1676 (1986).ADSCrossRefGoogle Scholar
  19. 14.
    T.E. Madey, J. Vac. Sci. Technol. A4, 257 (1986).ADSGoogle Scholar
  20. 15.
    S.L. Tang, M.B. Lee, Q. Y. Yang, J.D. Beckerle and S.T. Ceyer, J. Chem. Phys. 84, 1876 (1986).ADSCrossRefGoogle Scholar
  21. 16.
    T.H. Upton and W.A. Goddard III, Phys. Rev. Lett., 42, 472 (1979); andADSCrossRefGoogle Scholar
  22. 16a.
    T.H. Upton and W.A. Goddard III Phys. Rev. Lett. in “Chemistry and Physics of Solid Surfaces”, Vol III, R. Vanselow and W. England, eds. (CRC Press, Boca Raton, 1982).Google Scholar
  23. 17.
    D. Post and E.J. Baerends, J. Chem. Phys., 78, 5663 (1983).ADSCrossRefGoogle Scholar
  24. 18.
    P.-L. Cao, D.E. Ellis, A.J. Freeman, Q.-Q. Zheng and S.D. Bader, Phys. Rev., B30, 4146 (1984).ADSGoogle Scholar
  25. 19.
    B.N.J. Persson and J. E. Müller, Surface Sci., 171, 219 (1986).ADSCrossRefGoogle Scholar
  26. 20.
    J.P. Dahl and J. Avery, eds, “Local Approximations in Quantum Chemistry and Solid State Physics”, Plenum, New York, 1984.Google Scholar
  27. 21.
    J. Andzelm, E. Radzio and D.R. Salahub, J. Chem. Phys., 83, 4573 (1985).ADSCrossRefGoogle Scholar
  28. 22.
    C.W. Bauschlicher Jr., J. Chem. Phys., 84, 250 (1986);ADSCrossRefGoogle Scholar
  29. 22a.
    C.W. Bauschlicher Jr. J. Chem. Phys. Lett., 129, 586 (1986).ADSCrossRefGoogle Scholar
  30. 23.
    W. Ravenek and F.M.M. Geurts, J.Chem. Phys., 84, 1613 (1986).ADSCrossRefGoogle Scholar
  31. 24.
    J. Andzelm and D.R. Salahub to be published.Google Scholar
  32. 25.
    G.D. Kubiak and R.H. Stulen, J. Vac. Sci Technol. A4, 1427 (1986).ADSGoogle Scholar
  33. 26.
    S.M. Foiles and M.S. Daw, J. Vac. Sci. Technol. A3, 1565 (1985).ADSGoogle Scholar
  34. 27.
    J. Andzelm, N.A. Baykara, S.Z. Baykara and D.R. Salahub, unpublishedGoogle Scholar
  35. 28.
    S. Ishi, Y. Ohno and B. Viswanathan, Surface Sci. 161, 349 (1985).ADSCrossRefGoogle Scholar
  36. 29.
    E. Shustorovich, Surface Sci. Rept. 6, 1 (1986).ADSCrossRefGoogle Scholar
  37. 30.
    D.A. Mullins, B.Roop and J.M. White, Chem. Phys. Lett., 129, 511 (1986).ADSCrossRefGoogle Scholar
  38. 31.
    G. Doyen and G. Ertl, Surface Sci. 69, 157 (1977).ADSCrossRefGoogle Scholar
  39. 32.
    A. Gavezzotti, G.F. Tantardini and M. Simonetta, Chem. Phys. 105, 333 (1980).CrossRefGoogle Scholar
  40. 33.
    R.J. Behm, K. Christmann, G. Ertl and M.A. VanHove, J. Chem. Phys., 72, 2989 (1986).Google Scholar
  41. 34.
    A. Ortega, F.M. Hoffmann, A.M. Bradshaw, Surface Sci., 119, 79 (1982).ADSCrossRefGoogle Scholar
  42. 35.
    A. Brown, J.C. Vickerman, Surface Sci., 151, 319 (1985).ADSCrossRefGoogle Scholar
  43. 36.
    P. Gelin, J.T. Yates Jr., Surface Sci., 136, L1 (1984).ADSCrossRefGoogle Scholar
  44. 37.
    R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471 (1985).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jan Andzelm
    • 1
  • Dennis Salahub
    • 1
  1. 1.Departement de chimieUniversité de MontréalMontréalCanada

Personalised recommendations