Advertisement

Membrane Receptors for Polypeptide Hormones

  • C. Ronald Kahn

Abstract

Hormones are a group of compounds secreted by certain organs or cells into the circulation which act to coordinate and regulate the metabolic processes of other cells. The hormones are found in the circulation at very low concentrations (10−12 to 10−6M) and may be divided into three main chemical classes: peptides, steroids, and derivatives of aromatic amino acids. One characteristic feature of hormone action is that most hormones show a high degree of target tissue specificity. Over the past two decades a large number of laboratories have been studying the question of how hormones recognize their target organs. It is now clear that this hormone specificity is due to specific hormone binding sites called receptors in the target tissues. In the case of steroids, the hormones appear to enter the cell freely and bind to receptors which are intracellular and soluble (Baulieu et al., 1971). The primary event in the action of the polypeptide hormones and catecholamines, on the other hand, appears to be binding to specific receptor sites on the plasma membrane of the cell (Roth, 1973; Lefkowitz, 1973; Desbuquois and Cuatrecasas, 1973). The purpose of this chapter is to review recent work on the peptide hormone receptors with an emphasis on methodology and data analysis. The interaction of catecholamines with their receptors is also included since these compounds behave similarly. In this review, the term “receptor” will be used to refer only to that component of the membrane which selectively recognizes or discriminates a hormone in a specific binding reaction. The events occurring after hormone binding which eventually lead to the hormonal response will not be considered part of the receptor itself and will be designated as the “effector.” It should be emphasized, however, that not all hormone binding sites are necessarily receptors (i.e., involved in the biological response), since the membrane may possess degrading enzymes and other proteins which bind the hormone. The definitive determination that a binding site is the true receptor is often extremely difficult.

Keywords

Insulin Receptor Insulin Binding Hormone Binding Polypeptide Hormone Radioreceptor Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, S. M., Carraway, T. F., and Kohn, L. D., 1973, The binding of thyrotropin to isolated bovine thyroid plasma membranes, J. Biol. Chem. 248:4092–4100.PubMedGoogle Scholar
  2. Archer, J. A., Gorden, P., Gavin, J. R., III, Lesniak, M. A., and Roth, J., 1973a, Insulin receptors in human circulating lymphocytes: Application to the study of insulin resistance in man, J. Clin. Endocrinol. Metab. 36:627–633.PubMedGoogle Scholar
  3. Archer, J. A., Gorden, P., Kahn, C. R., Gavin, J. R., III, Neville, D. M., Jr., Martin, M. M., and Roth, J., 19736, Insulin receptor deficiency states in man: Two clinical forms, J. Clin. Invest. 21:4a.Google Scholar
  4. Armstrong, K. J., Noall, M. W., and Stouffer, J. E., 1972, Dextran-linked insulin: A soluble high molecular weight derivative with biological activity in vivo and in vitro, Biochem. Biophys. Res. Commun. 47:354–360.PubMedGoogle Scholar
  5. Arquilla, E. R., Ooms, H., and Mercola, K., 1968, Immunological and biological properties of iodoinsulin labeled with one or less atoms of iodine per molecule, J. Clin. Invest. 47:474–486.PubMedGoogle Scholar
  6. Banerjee, S. P., Snyder, S. H., Cuatrecasas, P., and Greene, L. A., 1973, Binding of nerve growth factor receptor in sympathetic ganglia, Proc. Natl. Acad. Sci. 70:2519–2523.PubMedGoogle Scholar
  7. Barden, N., and Labrie, F., 1973, Receptor for thyrotropin-releasing hormone in plasma membranes of bovine anterior pituitary gland: Role of lipids, J. Biol. Chem. 248: 7601–7606.PubMedGoogle Scholar
  8. Bataille, D. P., Freychet, P., Kitabgi, P. E., and Rosselin, G. E., 1973, Gut glucagon: A common receptor site with pancreatic glucagon in liver cell plasma membranes, FEBS Letters 30:215–218.PubMedGoogle Scholar
  9. Baulieu, E. E., and Raynaud, J. P., 1970, A “proportion graph” method for measuring binding systems, J. Biochem. 13:293–304.Google Scholar
  10. Baulieu, E. E., Alberga, A., Jung, I., Lebeau, M. C., Mercier-Bodard, C., Milgrom, E., Raynaud, J. P., Raynaud-Jammet, C., Rochefort, H., Truong, H., and Robel, H., 1971, Metabolism and protein binding of sex steroids in target organs: An approach to the mechanism of hormone action, Recent Prog. Horm. Res. 27:351–412.PubMedGoogle Scholar
  11. Baxter, D., Gates, R. J., and Lazarus, N. R., 1973, Insulin receptor of the New Zealand obese mouse (NZO): Changes following the implantation of islets of Langerhans, in VIII Congress of the International Diabetes Federation, Brussels, July 15-20, 1973, p. 74. Excerpta Medica International Congress Series, No. 280, Excerpta Medica, Amsterdam.Google Scholar
  12. Bennett, V. G., and Cuatrecasas, P., 1972, Insulin receptor of fat cells in insulin-resistant metabolic states, Science 176:805–806.Google Scholar
  13. Bennett, V., and Cuatrecasas, P., 1973, Preparation of inverted plasma membrane vesicles from isolated adipocytes, Biochim. Biophys. Acta 311:362–380.PubMedGoogle Scholar
  14. Berson, S. A., and Yalow, R. S., 1973, in: Methods in Investigative and Diagnostic Endocrinology, Vol. 2A (S. A. Berson and R. S. Yalow, eds.), pp. 84–125, North-Holland, Amsterdam.Google Scholar
  15. Bhalla, V. K., and Reichert, L. E., Jr., 1974, Properties of follicle-stimulating hormonereceptor interactions: Specific binding of human follicle-stimulating hormone to rat testes, J. Biol. Chem. 249:43–51.PubMedGoogle Scholar
  16. Bilezikian, J. P., and Aurbach, G. D., 1973a, A beta-adrenergic receptor of the turkey erythrocyte. I. Binding of catecholamine and relationship to adenylate cyclase activity, J. Biol. Chem. 248:5575–5583.Google Scholar
  17. Bilezikian, J. P., and Aurbach, G. D., 1973b, A beta-adrenergic receptor of the turkey erythrocyte. II. Characterization and solubilization of the receptor, J. Biol. Chem. 248:5584–5589.PubMedGoogle Scholar
  18. Bilezikian, J. P., and Aurbach, G. D., 1974, The effects of nucleotides on the expression of beta-adrenergic adenylate cyclase activity in membranes from turkey erythrocytes, J. Biol. Chem. 249:157–161.PubMedGoogle Scholar
  19. Birk, J., Rothenbuchner, G., Loos, U., Raptis, S., Fletcher, S., and Pfeiffer, E. F., 1972, Experiments with 125iodine-labeled TRH, in: Fourth International Congress of Endocrinology, 1972, abst. No. 222, p. 88, Excerpta Medical International Congress Series No. 256, Excerpta Medica, Amsterdam.Google Scholar
  20. Birnbaumer, L., and Pohl, S. L., 1973, Relation of glucagon-specific binding sites to glucagon-dependent stimulation of adenylyl cyclase activity in plasma membranes of rat liver, J. Biol. Chem. 248:2056–2061.PubMedGoogle Scholar
  21. Birnbaumer, L., Pohl, S. L., and Rodbell, M., 1971, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. II. Comparison between glucagon-and fluoride-stimulated activities, J. Biol. Chem. 246:1857–1860.PubMedGoogle Scholar
  22. Birnbaumer, L., Pohl, S. L., and Rodbell, M., 1972, The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: Reversibility and dependence on concentration of free hormone, J. Biol. Chem. 247:2038–2043.PubMedGoogle Scholar
  23. Blatt, L. M., and Kim, K. H., 1971, Regulation of hepatic glycogen synthetase: Stimulation of glycogen synthetase in an in vitro liver system by insulin bound to sepharose, J. Biol. Chem. 246:4895–4898.PubMedGoogle Scholar
  24. Blecher, M., Giorgio, N. A., Jr., and Johnson, C. B., 1972, Hormone receptors. II. Biological activity of agarose-glucagon, and isolation of glucagon-binding proteins from solubilized liver plasma membranes by gel and affinity chromatography, in: The Role of Membranes in Metabolic Regulation (M. A. Mehlman, and R. W. Hanson, eds.), pp. 367–383, Academic Press, New York.Google Scholar
  25. Bockaert, J., Jard, S., Morel, F., and Montegut, M., 1970, Uptake of oxytocin-3H by frog skin and bladder epithelial cells, Am. J. Physiol. 219:1514–1521.PubMedGoogle Scholar
  26. Bockaert, J., Imbert, M., Jard, S., and Morel, F., 1972, [3H]oxytocin binding sites in the isolated frog skin epithelium: Relation to the physiological response, Mol. Pharmacol. 8:230–240.PubMedGoogle Scholar
  27. Bockaert, J., Roy, C., Rajerison, R., and Jard, S., 1973, Specific binding of [3H]lysine-vasopressin to pig kidney plasma membranes, J. Biol. Chem. 248:5922–5931.PubMedGoogle Scholar
  28. Bolton, A. E., and Hunter, W. M., 1973, The labeling of proteins to high specific radioactivity by conjugation to a 125I-containing acylating agent: Application to the radioimmunoassay, Biochem. J. 133:529–539.PubMedGoogle Scholar
  29. Boyum, A., 1968, Isolation of mononuclear cells and granulocytes from human blood, Scand. J. Clin. Lab. Invest. 21:77–89 (Suppl. 97).Google Scholar
  30. Brecher, P., Tabacchi, M., Pyun, H. Y., and Chebanian, A. V., 1973, Angiotensin binding to rat adrenal capsular cell suspensions, Biochem. Biophys. Res. Commun. 54:1511–1517.PubMedGoogle Scholar
  31. Bromer, W. W., Boucher, M. E., and Patterson, J. M., 1973, Glucagon structure and function. II. Increased activity of iodoglucagon, Biochem. Biophys. Res. Commun. 53:134–139.PubMedGoogle Scholar
  32. Butcher, R. W., Crofford, O. B., Gammeltoft, S., Gliemann, J., Gavin, J. R., III, Goldfine, I. D., Kahn, C. R., Rodbell, M., and Roth, J., 1973, Insulin activity: The solid matrix, Science 182:396–397.PubMedGoogle Scholar
  33. Cambell, B. J., Woodward, G., and Borberg, V., 1972, Calcium-mediated interactions between the antidiuretic hormone and renal plasma membranes, J. Biol. Chem. 247:6167–6175.Google Scholar
  34. Catt, K. J., and Dufau, M. L., 1973a, Spare gonadotropin receptors in rat testis, Nature New Biol. 244:219–221.PubMedGoogle Scholar
  35. Catt, K. J., and Dufau, M. L., 1973b, Interactions of LH and hCG with testicular gonadotropin receptors, in: Receptors for Reproductive Hormones (B. W. O’Malley, ed.), pp. 379–418, Plenum, New York.Google Scholar
  36. Catt, K. J., Dufau, M. L., and Tsuruhara, T., 1971, Studies on a radioligand-receptor assay system for luteinizing hormone and chorionic gonadotropin, J. Clin. Endocrinol. Metab. 32:860–870.PubMedGoogle Scholar
  37. Catt, K. J., Dufau, M. L., and Tsuruhara, T., 1972a, Radioligand-receptor assay of luteinizing hormone and chorionic gonadotropin, J. Clin. Endocrinol. Metab. 34: 123–132.PubMedGoogle Scholar
  38. Catt, K. J., Tsuruhara, T., and Dufau, M. L., 1972a, Gonadotropin binding sites of the rat testis, Biochim. Biophys. Acta 279:194–201.PubMedGoogle Scholar
  39. Charreau, E. H., Dufau, M. L., and Catt, K. J., 1973, Physical forms of the soluble LH receptor, in: 55 th Annual Meeting of the Endocrine Society, Chicago, June 20-23, 1973, p. A–188, J. B. Lippincott, Philadelphia.Google Scholar
  40. Clark, C. M., Jr., Beatty, B., and Allen, D. O., 1973, Evidence for delayed development of the glucagon receptor of adenylate cyclase in the fetal and neonatal rat heart, J. Clin. Invest. 52:1018–1025.PubMedGoogle Scholar
  41. Cole, F. E., Davis, K., Huseby, R. A., and Rice, B. F., 1973a, Gonadotropin receptor of a mouse luteoma: Interactions with luteinizing hormone (LH) and its α and β subunits, Biol. Reprod. 8:550–559.PubMedGoogle Scholar
  42. Cole, F. E., Weed, J. C., Schneider, G. T., Holland, J. B., Geary, W. L., and Rice, B. F., 1973b, The gonadotropin receptor of the human corpus luteum, Am. J. Obstet. Gynecol. 117:87–95.PubMedGoogle Scholar
  43. Crofford, O. B., 1968, The uptake and inactivation of native insulin by isolated fat cells, J. Biol. Chem. 243:362–369.PubMedGoogle Scholar
  44. Cuatrecasas, P., 1969, Interaction of insulin with the cell membrane: The primary action of insulin, Broc. Natl. Acad. Sci. 63:450.Google Scholar
  45. Cuatrecasas, P., 1971a, Insulin-receptor interactions in adipose tissue cells: Direct measurement and properties, Proc. Natl. Acad. Sci. 68:1264–1268.PubMedGoogle Scholar
  46. Cuatrecasas, P., 1971b, Perturbation of the insulin receptor of isolated fat cells with proteolytic enzymes: Direct measurement of insulin receptor interactions, J. Biol. Chem. 246:6522–6531.Google Scholar
  47. Cuatrecasas, P., 1971c, Unmasking of insulin receptors in fat cells and fat cell membranes: Perturbation of membrane lipids, J. Biol. Chem. 246:6532–6542.PubMedGoogle Scholar
  48. Cuatrecasas, P., 1971d, Properties of the insulin receptor of isolated fat cell membranes, J. Biol. Chem. 246:7265–7274.PubMedGoogle Scholar
  49. Cuatrecasas, P., 1972a, Isolation of the insulin receptor of liver and fat-cell membranes, Proc. Natl. Acad. Sci. 69:318–322.PubMedGoogle Scholar
  50. Cuatrecasas, P., 1972b, Affinity chromatography and purification of the insulin receptor of liver cell membranes, Proc. Natl. Acad. Sci. 69:1277–1281.PubMedGoogle Scholar
  51. Cuatrecasas, P., 1972c, The nature of insulin-receptor interactions, in: Insulin Action (I. B. Fritz, ed.), pp. 137–169, Academic Press, New York.Google Scholar
  52. Cuatrecasas, P., 1972d, The insulin receptor, Diabetes 21:396–402 (Suppl. 2).PubMedGoogle Scholar
  53. Cuatrecasas, P., 1973a, Isolation and characterization of hormone receptors, Neurosc. Res. Prog. Bull. 11:215–219.Google Scholar
  54. Cuatrecasas, P., 1973b, Insulin receptor of liver and fat cell membranes, Fed. Proc. 32: 1838–1846.PubMedGoogle Scholar
  55. Cuatrecasas, P., 1973c, Interaction of concanavalin A and wheat germ agglutinin with the insulin receptor of fat cells and liver, J. Biol. Chem. 248:3528–3534.PubMedGoogle Scholar
  56. Cuatrecasas, P., 1973d, Biological activity of insulin sepharose: A reassessment, Science 179:1143–1144.Google Scholar
  57. Cuatrecasas, P., and Illiano, G., 1971, Membrane sialic acid and the mechanism of insulin action in adipose tissue cells: Effects of digestion with neuraminidase, J. Biol. Chem. 246:4938–4946.PubMedGoogle Scholar
  58. Cuatrecasas, P., and Tell, G. P. E., 1973, Insulin-like activity of concanavalin A and wheat germ agglutinin—Direct interactions with insulin receptors, Proc. Natl. Acad. Sci. 70:485–489.PubMedGoogle Scholar
  59. Cuatrecasas, P., Desbuquois, B., and Krug, F., 1971, Insulin-receptor interactions in liver cell membranes, Biochem. Biophys. Res. Commun. 44:333–339.PubMedGoogle Scholar
  60. Cuatrecasas, P., Tell, G. P. E., Sica, V., Parikh, L., and Chang, K.-J., 1974, Noradrenaline binding and the search for catecholamine receptors, Nature (Lond.) 247:92–97.PubMedGoogle Scholar
  61. Czech, M. P., and Fain, J. N., 1970, Insulin protection against fat cell receptor inactivation by trypsin, Endocrinology 87:191–194.PubMedGoogle Scholar
  62. Danzo, B. J., 1973, Characterization of a receptor for human chorionic gonadotrophin in luteinized rat ovaries, Biochim. Biophys. Acta 304:560–569.PubMedGoogle Scholar
  63. Danzo, B. J., Midgley, A. R., Jr., and Kleinsmith, L. J., 1972, Human chorionic gonadotropin binding to rat ovarian tissue in vitro, Proc. Soc. Exp. Biol. Med. 139:88–92.Google Scholar
  64. Davidson, M. B., van Herle, A. J., and Gerschenson, L. E., 1973, Insulin and sepharoseinsulin effects on tyrosine transaminase levels in cultured rat liver cells, Endocrinology 92:1442–1446.PubMedGoogle Scholar
  65. De Kretser, D. M., Catt, K. J., and Paulsen, C. A., 1971, Studies on the in vitro testicular binding of iodinated luteinizing hormone in rats, Endocrinology 89:332–337.Google Scholar
  66. De Meyts, P., Roth, J., Neville, D. M, Jr., Gavin, J. R., III, and Lesniak, M. A., 1973, Insulin interactions with its receptors: Experimental evidence for negative cooperativity, Biochem. Biophys. Res. Commun. 55:154–161.PubMedGoogle Scholar
  67. De Meyts, P., Roth, J., Neville, D. M, Jr., and Freychet, P., 1974a, Cooperative interactions among insulin receptors: Effects of structural modifications of insulin, in: 56th Annual Meeting of the Endocrine Society, Atlanta, June 12–14, 1974, p. A–189.Google Scholar
  68. De Meyts, P., Gavin, J. R., III, Roth, J., and Neville, D. M., Jr., 1974b, Concanavalin A: An inhibitor of cooperative interactions among insulin receptors, Diabetes 23:355 (Suppl. 1).Google Scholar
  69. De Santis, R. A., Gorenstein, T., Livingston, J. N., and Lockwood, D. H., 1973, The role of glucagon binding and phosphodiesterase in glucagon resistant large adipocytes, in: 55th Annual Meeting of the Endocrine Society, Chicago, June 20–23, 1973, p. A–172, J. B. Lippincott, Philadelphia.Google Scholar
  70. Desbuquois, B., and Cuatrecasas, P., 1972, Independence of glucagon receptors and glucagon inactivation in liver cell membranes, Nature New Biol. 237:202–204.PubMedGoogle Scholar
  71. Desbuquois, B., and Cuatrecasas, P., 1973, Insulin receptors, Ann. Rev. Med. 24:233–240.PubMedGoogle Scholar
  72. Desbuquois, B., Laudat, M. H., and Laudat, P., 1973, Vasoactive intestinal polypeptide and glucagon: Stimulation of adenylate cyclase activity via distinct receptors in liver and fat cell membranes, Biochem. Biophys. Res. Commun. 53:1187–1194.Google Scholar
  73. Devynck, M.-A., Baudouin, M., Pernollet, M.-G., and Meyer, P., 1972, Angiotensin receptors in smooth muscle cell membranes, in: Hormones Pancreatiques, Hormones de l’Eau et des Electrolytes, p. 395, I.N.S.E.R.M., Paris.Google Scholar
  74. De Zoeten, L. W., and Van Strik, R., 1961, A study of the biological activity of iodinated insulin, Rec. Trav. Chim. (Pays Bas) 80:927–931.Google Scholar
  75. Douglas, J., Glossman, H., Baukal, A., Lewis, M., and Catt, K., 1974, Cation dependence of angiotensin II receptors, Clin. Res. 23:338A.Google Scholar
  76. Dufau, M. L., and Catt, K. J., 1973, Extraction of soluble gonadotrophin receptors from rat testis, Nature New Biol. 242:246–248.PubMedGoogle Scholar
  77. Dufau, M. L., Catt, K. J., and Tsuruhara, T., 1972, Biological activity of human chorionic gonadotropin released from testis binding sites, Proc. Natl. Acad. Sci. 69:2414–2416.PubMedGoogle Scholar
  78. Dufau, M. L., Charreau, E. H., and Catt, K. J., 1973, Characteristics of a soluble gonadotropin receptor from the rat testis, J. Biol. Chem. 248:6973–6982.PubMedGoogle Scholar
  79. Dufau, M. L., Charreau, E. H., Ryan, D., and Catt, K. J., 1974, Soluble gonadotropin receptors of the rat ovary, FEBS Letters 39:149–153.PubMedGoogle Scholar
  80. Eddy, L. J., Hershman, J. M., Taylor, R. E., Jr., and Barker, S. B., 1973, Binding of thyrotropin releasing hormone by thyrotropin-secreting cells, Biochem. Biophys. Res. Commun. 54:140–146.PubMedGoogle Scholar
  81. Edelman, P. L., and Schwartz, I. L., 1966, Subcellular distribution of I131-insulin in striated muscle, Am. J. Med. 40:695–708.PubMedGoogle Scholar
  82. Eisen, H. J., Goldfine, I. D., and Glinsmann, W. H., 1973, Regulation of hepatic glycogen synthesis during fetal development: Roles of hydrocortisone, insulin, and insulin receptors, Proc. Natl. Acad. Sci. 70:3454–3457.PubMedGoogle Scholar
  83. El-Allawy, R. M. M., and Gliemann, J., 1972, Trypsin treatment of adipocytes: Effect on sensitivity to insulin, Biochim. Biophys. Acta 273:97–109.PubMedGoogle Scholar
  84. Fain, J. N., and Loken, S. C., 1969, Response of trypsin-treated brown and white fat cells to hormones, J. Biol. Chem. 244:3500–3506.PubMedGoogle Scholar
  85. Feldman, H. A., 1972, Mathematical theory of complex ligand-binding systems at equilibrium: Some methods for parameter fitting, Anal. Biochem. 48:317–338.PubMedGoogle Scholar
  86. Feldman, H., and Rodbard, D., 1971, Mathematical theory of radioimmunoassay, in Principles of Competitive Protein-Binding Assays, pp. 158–203, Lippincott, New York.Google Scholar
  87. Figarova, V., Presl, J., Pospisil, J., Wagner, V., Horsky, J., and Krabec, Z., 1972, Decrease in HCG—Binding capacity of target tissues influenced by hypophysectomy, Endocrinol. Exp. 6:85–88.Google Scholar
  88. Finn, F. M., Widnell, C. C., and Hofmann, K., 1972, Localization of an adrenocorticotropic hormone receptor on bovine cortical membranes, J. Biol. Chem. 247:5695–5702.PubMedGoogle Scholar
  89. Frazier, W. A., Boyd, L. F., and Bradshaw, R. A., 1973, Interaction of nerve growth factor with surface membranes: Biological competence of insolubilized nerve growth factor, Proc. Natl. Acad. Sci. 70:2931–2935.PubMedGoogle Scholar
  90. Freeman, C., Karoly, K., and Adelman, R. C., 1973, Impairments to availability of insulin to liver in vivo and in binding of insulin to purified hepatic plasma membrane during aging, Biophys. Res. Commun. 54:1573–1580.Google Scholar
  91. Freychet, P., and Forgue, E., 1974, Insulin receptors in the heart muscle: Impairment of insulin binding to the plasma membrane in the obese hyperglycemic mouse, Diabetes, 23 (Suppl. 1):354.Google Scholar
  92. Freychet, P., Roth, J., and Neville, D. M., Jr., 1971a, Monoiodoinsulin: Demonstration of its biological activity and binding to fat cells and liver membranes, Biochem. Biophys. Res. Commun. 43:400–408.PubMedGoogle Scholar
  93. Freychet, P., Roth, J., and Neville, D. M., Jr., 1971b, Insulin receptors in the liver: Specific binding of [125I]insulin to the plasma membrane and its relation to insulin bioactivity, Proc. Natl. Acad. Sci. 68:1833–1837.PubMedGoogle Scholar
  94. Freychet, P., Kahn, R., Roth, J., and Neville, D. M., Jr., 1972a. Insulin interactions with liver plasma membranes: Independence of binding of the hormone and its degradation, J. Biol. Chem. 247:3953–3961.PubMedGoogle Scholar
  95. Freychet, P., Roth, J., Kahn, R., and Neville, D. M., Jr., 1972b, Insulin receptor interaction in the liver: Specific binding of 125I-insulin to the plasma membrane, in: Colloque sur les Hormones Pancreatiques, Vol. 1, pp. 335–357, I.N.S.E.R.M., Paris.Google Scholar
  96. Freychet, P., Laudat, M. H., Laudat, P., Rosselin, G., Kahn, C. R., Gorden, P., and Roth, J., 1972c, Impairment of insulin binding to the fat cell membrane in the obese hyperglycemic mouse, FEBS Letters 25:339–342.PubMedGoogle Scholar
  97. Freychet, P., Kahn, R., Roth, J., and Neville, D. M., Jr., 1973, Insulin receptors in liver cell plasma membranes, in: Endocrinology: Proceedings of the Fourth International Congress of Endocrinology (R. Scow, ed.), Excerpta Medica (ICS No. 273), pp. 335–340.Google Scholar
  98. Freychet, P., Brandenburg, D., and Wollmer, A., 1974a, Receptor-binding assay of chemically modified insulins: Comparison with in vitro and in vivo bioassays, Diabetologia, 10:1–5.PubMedGoogle Scholar
  99. Freychet, P., Rosselin, G., Rancon, F., Fouchereau, M., and Broer, Y., 1974b, Interactions of insulin and glucagon with isolated rat liver cells. I. Binding of the hormones to specific receptors, Horm. Metab. Res., in press.Google Scholar
  100. Gammeltoft, S., and Gliemann, J., 1973, Binding and degradation of 125I-labelled insulin by isolated rat fat cells, Biochim. Biophys. Acta 320:16–32.PubMedGoogle Scholar
  101. Gardner, J. D., Klaeveman, H. L., Bilezikian, J. P., and Aurbach, G. D., 1973, Effect of beta-adrenergic catecholamines on sodium transport in turkey erythrocytes, J. Biol. Chem. 248:5590–5597.PubMedGoogle Scholar
  102. Garratt, C. J., 1964, Effect of iodination on the biological activity of insulin, Nature (Lond.) 201:1324–1325.PubMedGoogle Scholar
  103. Garratt, J., Cameron, J. S., and Menzinger, G., 1966a, The association of [131I]iodoinsulin with rat diaphragm muscle and its effect on glucose uptake, Biochim. Biophys. Acta 115:170–186.Google Scholar
  104. Garratt, J., Jarrett, R. J., and Keen, H., 1966b, The relationship between insulin association with tissues and insulin action, Biochim. Biophys. Acta 121:143–150.PubMedGoogle Scholar
  105. Gavin, J. R., III, Roth, J., Jen, P., and Freychet, P., 1972a, Insulin receptors in human circulating cells and fibroblasts, Proc. Natl. Acad. Sci. 69:747–751.PubMedGoogle Scholar
  106. Gavin, J. R., III, Buell, D. N., and Roth, J., 1972b, Water-soluble insulin receptors from lymphocytes, Science 178:168–169.PubMedGoogle Scholar
  107. Gavin, J. R., III, Mann, D. L., Buell, D. N., and Roth, J., 1972c, Preparation of solubilized insulin receptors from human lymphocytes, Biochem. Biophys. Res. Commun. 49: 870–876.PubMedGoogle Scholar
  108. Gavin, J. R., III, Gorden, P., Roth, J., Archer, J. A., and Buell, D. N., 1973a, Characteristics of the human lymphocyte insulin receptor, J. Biol. Chem. 248:2202–2207.PubMedGoogle Scholar
  109. Gavin, J. R., III, Kahn, C. R., Gorden, P., Roth, J., Neville, D. M., Jr., and Humbel, R. E., 1973b, Radioreceptor assay for insulin: Application to plasma components and non-immunoreactive insulin-like materials, Diabetes 22:306 (Suppl. 1).Google Scholar
  110. Gavin, J. R., Roth, J., Neville, D. M., Jr., De Meyts, P., and Buell, D. N., 1974, Insulin-dependent regulation of insulin receptor concentrations: A direct demonstration in cell culture, Proc. Natl. Acad. Sci. 71:84–88.PubMedGoogle Scholar
  111. Giorgio, N. A., Johnson, C. B., and Blecher, M., 1974, Hormone receptors. III. Properties of glucagon-binding proteins isolated from liver plasma membranes, J. Biol. Chem. 249:428–437.PubMedGoogle Scholar
  112. Gliemann, J., and Gammeltoft, S., 1974, The biological activity and the binding affinity of modified insulin determined on isolated rat fat cells, Diabetologia 10:105–113.PubMedGoogle Scholar
  113. Gliemann, J., Østerlind, K., Vinten, J., and Gammeltoft, S., 1972, A procedure for measurement of distribution spaces in isolated fat cells, Biochim. Biophys. Acta 286:1–9.PubMedGoogle Scholar
  114. Gliemann, S., Gammeltoft, S., and Vinten, J., 1974, Time course of insulin-receptor binding and insulin-induced lipogenesis in isolated rat fat cells, J. Biol. Chem., submitted for publication.Google Scholar
  115. Glossman, H., Baukal, A., and Catt, K. J., 1973, Angiotensin II receptors of the adrenal cortex, Clin. Res. 21:492.Google Scholar
  116. Glossman, H., Baukal, A., and Catt, K. J., 1974a, Angiotensin II receptors in bovine adrenal cortex: Modification of angiotensin II binding by guanyl nucleotides, J. Biol. Chem. 249:664–666.Google Scholar
  117. Glossman, H., Baukal, A. J., and Catt, K. J., 1974b, Properties of angiotensin II receptors in the bovine and rat adrenal cortex, J. Biol. Chem. 249:825–834.Google Scholar
  118. Goldfine, I. D., Roth, J., and Birnbaumer, L., 1972a, Glucagon receptors in β-cells: Binding of 125I-glucagon and activation of adenylate cyclase, J. Biol. Chem. 247:1211–1218.PubMedGoogle Scholar
  119. Goldfine, I. D., Gardner, J. D., and Neville, D. M., Jr., 1972b, Insulin action in isolated rat thymocytes. I. Binding of 125I-insulin and stimulation of α-aminoisobutyric acid transport, J. Biol. Chem. 247:6919–6926.PubMedGoogle Scholar
  120. Goldfine, I. D., Kahn, C. R., Neville, D. M., Jr., Roth, J., Garrison, M. M., and Bates, R. W., 1973, Decreased binding of insulin to its receptors in rats with hormone induced insulin resistance, Biochem. Biophys. Res. Commun. 53:852–857.PubMedGoogle Scholar
  121. Goldfine, I. D., Neville, D. M., Jr., and Roth, J., 1974, Insulin receptor binding and insulin action in rat thymocytes: Effects of age and hypophysectomy, submitted for publication.Google Scholar
  122. Goodfriend, T. L., and Lin, S., 1970, Receptors for angiotensin I and II, Circ. Res. 26-27: 1–163–1–174 (Suppl. 1).Google Scholar
  123. Gorden, P., Lesniak, M. A., Hendricks, C. M., and Roth, J., 1973a, “Big” growth hormone components from human plasma: Decreased reactivity demonstrated by radioreceptor assay, Science 182:829–831.PubMedGoogle Scholar
  124. Gorden, P., Gavin, J. R., III, Kahn, C. R., Archer, J. A., Lesniak, M., Hendricks, C., Neville, D. M., Jr., and Roth, J., 1973b, Application of radioreceptor assay to circulating insulin, growth hormone, and to their tissue receptors in animals and man, Pharmacol. Rev. 25:179–187.PubMedGoogle Scholar
  125. Gospodarowicz, D., 1973, Properties of the luteinizing hormone receptor of isolated bovine corpus luteum plasma membranes, J. Biol. Chem. 248:5042–5049.PubMedGoogle Scholar
  126. Grant, G., Vale, W., and Guillemin, R., 1972, Interaction of thyrotropin releasing factor with membrane receptors of pituitary cells, Biochem. Biophys. Res. Commun. 46: 28–34.PubMedGoogle Scholar
  127. Grant, G., Vale, W., and Guillemin, R., 1973, Characteristics of the pituitary binding sites for thyrotropin-releasing factor, Endocrinology 92:1629–1633.PubMedGoogle Scholar
  128. Gurd, J. W., and Evans, W. H., 1973, Relative rates of degradation of mouse-liver surface-membrane proteins, Europ. J. Biochem. 36:273–279.PubMedGoogle Scholar
  129. Hamlin, J. L., and Arquilla, E. R., 1974, Monoiodoinsulin: Preparation, purification, and characterization of a biologically active derivative substituted predominantly on tyrosine A14, J. Biol Chem. 249:21–32.PubMedGoogle Scholar
  130. Hammond, J. M., Jarett, L., Mariz, I. K., and Daughaday, W. H., 1972, Heterogeneity of insulin receptors on fat cell membranes, Biochem. Biophys. Res. Commun. 49: 1122–1128.PubMedGoogle Scholar
  131. Haour, F., and Bertrand, J., 1974, Insulin receptors in the plasma membranes of human placenta, J. Clin. Endocrinol. Metab. 38:334–337.PubMedGoogle Scholar
  132. Harwood, J. P., Löw, H., and Rodbell, M., 1973, Stimulatory and inhibitory effects of guanyl nucleotides on fat cell adenylate cyclase, J. Biol. Chem. 248:6230–6245.Google Scholar
  133. Haye, B., and Jacquemin, C., 1971, Interaction de la thyreostimuline avec ses recepteurs cellulaires: Effet de lat phospholipase C sur la fixation et l’activitie biologique, FEBS Letters 18:47–52.PubMedGoogle Scholar
  134. Hinkle, P. M., and Tashijian, A. H. Jr., 1973, Receptors for thyrotropin-releasing hormone in prolactin-producing rat pituitary cells in culture, J. Biol. Chem. 248:6180–6186.PubMedGoogle Scholar
  135. Hintz, R. L., Clemmons, D. R., Underwood, L. E., and Van Wyk, J. J., 1972, Competitive binding of somatomedin to the insulin receptors of adipocytes, chondrocytes, and liver membranes, Proc. Natl. Acad. Sci. 69:2351–2353.PubMedGoogle Scholar
  136. Hofmann, K., Wingender, W., and Finn, F. M., 1970, Correlation of adrenocorticotropic activity of ACTH analogs with degree of binding to an adrenal cortical particulate preparation, Proc. Natl. Acad. Sci. 67:829–836.PubMedGoogle Scholar
  137. Hofmann, K., Montibeller, J. A., and Finn, F. M., 1974, ACTH antagonists, Proc. Natl. Acad. Sci. 74:80–83.Google Scholar
  138. Hollenberg, M. D., and Cuatrecasas, P., 1973, Epidermal growth factor: Receptors in human fibroblasts and modulation of action by cholera toxin, Proc. Natl. Acad. Sci. 70:2964–2968.PubMedGoogle Scholar
  139. House, P. D. R., 1971, Kinetics of 125I-insulin binding to rat liver plasma membranes, FEBS Letters 16:339–342.PubMedGoogle Scholar
  140. House, P. D. R., and Weidemann, M. J., 1970, Characterization of an [125I]insulin binding plasma membrane fraction from rat liver, Biochem. Biophys. Res. Commun. 41:541–548.PubMedGoogle Scholar
  141. Hsu, H., and Haymovits, A., 1973, Calcitonin: Inactivation and binding by renal cells in vitro, in: 55th Annual Meeting of the Endocrine Society, Chicago, June 20–23, 1973, p. A–230, J. B. Lippincott, Philadelphia.Google Scholar
  142. Hunter, W. M., and Greenwood, F. C., 1962, Preparation of iodine-131 human growth hormone of high specific activity, Nature (Lond.) 194:495–496.PubMedGoogle Scholar
  143. Illiano, G., and Cuatrecasas, P., 1972, The role of sialic acid residues on the responsiveness of fat cells to hormones, in: Hormones Pancreatiques, Hormones de l’Eau et des Electrolytes, pp. 321–334, I.N.S.E.R.M., Paris.Google Scholar
  144. Izzo, J. L., Roncone, A., Izzo, M. J., and Bale, W. F., 1964, Relationship between degree of iodination of insulin and its biological, electrophoretic, and immunochemical properties, J. Biol. Chem. 239:3749–3754.PubMedGoogle Scholar
  145. Jard, S., Bockaert, J., Bernard, M., and Morel, F., 1972, Etude des recepteurs de l’ocytocine et de leurs relations avec l’adenylcyclase dans les cellules epitheliales d’amphibiens, in: Hormones Pancreatiques, Hormones de l’Eau et des Electrolytes, pp. 384–393, I.N.S.E.R.M., Paris.Google Scholar
  146. Jarett, L., Smith, R. M., and Crespin, S. R., 1974, Epinephrine binding to rat adipocytes and their subcellular fractions, Endocrinology 94:719–729.PubMedGoogle Scholar
  147. Johnson, C. B., Blecher, M., and Giorgio, N. A., Jr., 1972, Hormone receptors. I. Activation of rat liver plasma membrane adenylyl cyclase and fat cell lipolysis by agaroseglucagon, Biochem. Biophys. Res. Commun. 46:1035–1041.PubMedGoogle Scholar
  148. Kahn, C. R., Neville, D. M., Jr., Gorden, P., Freychet, P., and Roth, J., 1972a, Insulin receptor defect in insulin resistance: Studies in the obese-hyperglycemic mouse, Biochem. Biophys. Res. Commun. 48:135–142.PubMedGoogle Scholar
  149. Kahn, C. R., Freychet, P., Neville, D. M., Jr., and Roth, J., 1972b, Quantitative aspects of insulin interaction with liver membranes, Diabetes 21:334 (Suppl. 1).Google Scholar
  150. Kahn, C. R., Neville, D. M., Jr., and Roth, J., 1973a, Insulin-receptor interaction in the obese-hyperglycemic mouse, J. Biol. Chem. 248:244–250.PubMedGoogle Scholar
  151. Kahn, C. R., Soll, A., Neville, D. M., Jr., and Roth, J., 1973b, Severe deficiency in insulin receptors: A common denominator in the insulin resistance of obesity, Clin. Res. 21:628.Google Scholar
  152. Kahn, C. R., Goldfine, I. D., Neville, D. M., Jr., Roth, J., Garrison, M., and Bates, R., 1973c, Insulin receptor defect: A major factor in the insulin resistance of glucocorticoid excess, in: Program of the 55th Meeting of the Endocrine Society, 1973, p. 168.Google Scholar
  153. Kahn C. R. Neville D. M. Jr. Soll A. and Roth J. 1973d Deficiency of insulin receptors in the insulin resistant obese hyperglycemic mouse in: VIII Congress of the International Diabetes Federation Brussels July 15–20 1973 p. 75 Excerpta Medica International Congress Series No. 280 Excerpta Medica Amsterdam.Google Scholar
  154. Kahn, C. R., Soll, A. H., Neville, D. M., Jr., Goldfine, I. D., Archer, J. A., Gorden, P., and Roth, J., 1973e, The insulin receptor in obesity and other states of altered insulin sensitivity, in: Proceedings of the Fogarty Conference on Obesity, Oct. 1–3, 1973, Bethesda, Md., National Institutes of Health, Bethesda, Md.Google Scholar
  155. Kahn, C. R., Freychet, P., Roth, J., and Neville, D. M., Jr., 1974, Quantitative aspects of the insulin-receptor interaction in liver plasma membranes, J. Biol. Chem. 249:2249–2257.PubMedGoogle Scholar
  156. Kammerman, S., and Canfield, R. E., 1972, The inhibition of binding of iodinated human chorionic gonadotropin to mouse ovary in vivo, Endocrinology 90:384–388.PubMedGoogle Scholar
  157. Kammerman, S., Canfield, R. E., Kolena, J., and Channing, C. P., 1972, The binding of iodinated hCG to porcine granulosa cells, Endocrinology 91:65–74.PubMedGoogle Scholar
  158. Katzen, H. M., and Soderman, D. D., 1972, Affinity chromatographic studies of the insulin receptivity associated with intact fat cells, their membranes, and solubilized extracts, in: The Role of Membranes in Metabolic Regulation (M. A. Mehlman, and R. W. Hanson, eds.), pp. 195–236, Academic Press, New York.Google Scholar
  159. Katzen, H. M., and Vlahakes, G. J., 1973, Biological activity of insulin-sepharose, Science 179:1142–1143.PubMedGoogle Scholar
  160. Keller, D., and Goldfien, A., 1973, The isolation of uterine adrenergic receptor activity, Clin. Res. 21:202.Google Scholar
  161. Klein, I., Fletcher, M. A., and Levey, G. S., 1973a, Evidence for a dissociable glucagon binding site in a solubilized preparation of myocardial adenylate cyclase, J. Biol. Chem. 248:5552–5554.PubMedGoogle Scholar
  162. Klein, I., Levey, G. S., Bricker, L. A., and Morris, H. P., 1973b, Glucagon and epinephrine activation of adenylate cyclase and glucagon binding in Morris hepatomas, Endocrinology 94:279–283.Google Scholar
  163. Klotz, I. M., and Hunston, D. L., 1971, Properties of graphical representations of multiple classes of binding sites, Biochemistry 10:3065–3069.PubMedGoogle Scholar
  164. Kono, T., 1969a, Destruction of insulin effector system of adipose tissue cells by proteolytic enzymes, J. Biol. Chem. 244:1772–1778.PubMedGoogle Scholar
  165. Kono, T., 1969b, Destruction and restoration of the insulin effector system in isolated fat cells, J. Biol. Chem. 244:5777–5784.PubMedGoogle Scholar
  166. Kono, T., 1972, The insulin receptor of fat cells: The relationship between the binding and physiological effects of insulin, in: Insulin Action (I. B. Fritz, ed.), pp. 171–205, Academic Press, New York.Google Scholar
  167. Kono, T., and Barham, F. W., 1971a, Insulin-like effects of trypsin on fat cells: Localization of the metabolic steps and the cellular site affected by the enzyme, J. Biol. Chem. 246:6204–6209.PubMedGoogle Scholar
  168. Kono, T., and Barham, F. W., 1971b, The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells, J. Biol. Chem. 246:6210–6216.PubMedGoogle Scholar
  169. Kono, T., and Barham, F. W., 1973, Effects of insulin on the levels of adenosine 3′:5′-monophosphate and lipolysis in isolated rat epididymal fat cells, J. Biol. Chem. 248:7417–7426.PubMedGoogle Scholar
  170. Kono, T., and Crofford, O. B., 1972, The interaction of insulin with fat cells: Its physiological significance, in: The Role of Membranes in Metabolic Regulation (M. A. Mehlman, and R. W. Hanson, eds.), pp. 237–245, Academic Press, New York.Google Scholar
  171. Koshland, D. E., Jr., Nemethy, G., and Filmer, D., 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5:365–385.PubMedGoogle Scholar
  172. Krug, F., Desbuquois, B., and Cuatrecasas, P., 1971, Glucagon affinity absorbents: Selective binding of receptors of liver cell membranes, Nature New Biol. 234:268.PubMedGoogle Scholar
  173. Krug, U., Krug, F., and Cuatrecasas, P., 1972, Emergence of insulin receptors on human lymphocytes during in vitro transformation, Proc. Natl. Acad. Sci. 69:2604–2608.PubMedGoogle Scholar
  174. Kurcbart, H., Coli, A., Vancheri, L., and Rosa, U., 1971, Chemical and biological effects associated with the iodination of angiotensin II, Biochim. Biophys. Acta 230:160–169.PubMedGoogle Scholar
  175. Labrie, F., Barden, N., Poirier, G., and DeLean, A., 1972, Binding of thyrotropinreleasing hormone to plasma membranes of bovine anterior pituitary gland, Proc. Natl. Acad. Sci. 69:283–287.PubMedGoogle Scholar
  176. Lambert, B., Sutter, B. C. J., and Jacquemin, C., 1972, Effect of iodination on the biological activity of insulin, Horm. Metab. Res. 4:149–151.PubMedGoogle Scholar
  177. Lee, C. Y., and Ryan, R. J., 1971, The uptake of human luteinizing hormone (hLH) by slices of luteinized rat ovaries, Endocrinology 89:1515–1523.PubMedGoogle Scholar
  178. Lee, C. Y., and Ryan, R. J., 1972, Luteinizing hormone receptors: Specific binding of human luteinizing hormone to homogenates of luteinized rat ovaries, Proc. Natl. Acad. Sci. 69:3520–3523.PubMedGoogle Scholar
  179. Lee, C. Y., and Ryan, R. J., 1973, Solubilization and purification of LH-hCG receptors from rat luteal tissue, in: 55th Annual Meeting of the Endocrine Society, Chicago, June 20–23, 1973, p. A–188, J. B. Lippincott, Philadelphia.Google Scholar
  180. Lee, C. Y., Coulam, B., Jiang, N. S., and Ryan, R. J., 1973, Receptors for human luteinizing hormone in human corpora luteal tissue, J. Clin. Endocrinol. Metab. 36:148–152.PubMedGoogle Scholar
  181. Lefkowitz R. J. 1972 Characterization and purification of the cardiac β = adrenergic receptor in: The Role of Membranes in Metabolic Regulation (M. A. Mehlman and R. W. Hanson eds.) pp. 261–285 Academic Press New York.Google Scholar
  182. Lefkowitz, R. J., 1973, Isolated hormone receptors: Physiologic and clinical implications, New Engl. J. Med. 288:1061–1066.PubMedGoogle Scholar
  183. Lefkowitz, R. J., and Haber, E., 1971, A fraction of the ventricular myocardium that has the specificity of the cardiac beta-adrenergic receptor, Proc. Natl. Acad. Sci. 68: 1773–1778.PubMedGoogle Scholar
  184. Lefkowitz, R. J., and Haber, E., 1973, Physiological receptors as physicochemical entities, Circ. Res. 32-33:46–52 (Suppl. 1).Google Scholar
  185. Lefkowitz, R. J., and Levey, G. S., 1972, Norepinephrine: Dissociation of β-receptor binding from adenylate cyclase activation in solubilized myocardium, Life Sci. 11:821–828 (Part II).Google Scholar
  186. Lefkowitz, R. J., Pastan, I., and Roth, J., 1969, in: The Role of Adenyl Cyclase 3′,5′-AMP in Biological Systems (T. W. Rall, M. Rodbell, and P. Condliffe, eds.), pp. 88–95, NIH Fogarty International Center Proceedings No. 4, National Institutes of Health, Bethesda, Md.Google Scholar
  187. Lefkowitz, R. J., Roth, J., Pricer, W., and Pastan, L., 1970a, ACTH-receptors in the adrenal: Specific binding of ACTH-125I and its relation to adenyl cyclase, Proc. Natl. Acad. Sci. 65:745–752.PubMedGoogle Scholar
  188. Lefkowitz, R. J., Roth, J., and Pastan, I., 1970b, Radioreceptor assay of adrenocorticotropic hormone: New approach to assay of polypeptide hormones in plasma, Science 170:633–635.PubMedGoogle Scholar
  189. Lefkowitz, R. J., Roth, J., and Pastan, I., 1970c, Effects of calcium on ACTH stimulation of the adrenal: Separation of hormone binding from adenyl cyclase activation, Nature (Lond.) 228:864–866.PubMedGoogle Scholar
  190. Lefkowitz, R. J., Roth, J., and Pastan, I., 1971, ACTH-receptor interaction in the adrenal: A model for the initial step in the action of hormone that stimulates adenyl cyclase, Ann. N.Y. Acad. Sci. 185:195–209.PubMedGoogle Scholar
  191. Lefkowitz, R. J., Haber, E., and O’Hara, D., 1972, Identification of the cardiac betaadrenergic receptor protein: Solubilization and purification by affinity chromatography, Proc. Natl. Acad. Sci. 69:2828–2832.PubMedGoogle Scholar
  192. Lefkowitz, R. J., O’Hara, D. S., Warshaw, J., 1973a, Binding of catecholamines to receptors in cultured myocardial cells, Nature New Biol. 24:79–80.Google Scholar
  193. Lefkowitz, R. J., Sharp, G. W. G., and Haber, E., 1973b, Specific binding of beta-adrenergic catecholamines to a subcellular fraction from cardiac muscle, J. Biol. Chem. 248:342–349.PubMedGoogle Scholar
  194. Leidenberger, F., and Reichert, L. E., Jr., 1972a, Studies on the uptake of human chorionic gonadotropin and its subunits by rat testicular homogenates and interstitial tissue, Endocrinology 91:135–143.PubMedGoogle Scholar
  195. Leidenberger, F., and Reichert, L. E., Jr., 1972b, Evaluation of a rat testis homogenate radioligand receptor assay for human pituitary LH, Endocrinology 91:901–909.PubMedGoogle Scholar
  196. Lesniak, M. A., Roth, J., Gorden, P., and Gavin, J. R., III, 1973, Human growth hormone radioreceptor assay using cultured human lymphocytes, Nature New Biol. 241:20–22.PubMedGoogle Scholar
  197. Lesniak, M. A., Gorden, P., Roth, J., and Gavin, J. R., III, 1974, Binding of 125I-human growth hormone to specific receptors in human cultured lymphocytes, J. Biol. Chem. 249:1661–1667.PubMedGoogle Scholar
  198. Levey, G. S., 1970, Solubilization of myocardial adenyl cyclase, Biochem. Biophys. Res. Commun. 38:86.PubMedGoogle Scholar
  199. Levey, G. S., 1971, Solubilization of myocardial adenyl cyclase: Loss of hormone-responsiveness and activation by phospholipids, Ann. N.Y. Acad. Sci. 185:449.PubMedGoogle Scholar
  200. Lin, S.-Y., and Goodfriend, T. L., 1970, Angiotensin receptors, Am. J. Physiol. 218: 1319–1328.PubMedGoogle Scholar
  201. Lin, S., Ellis, H., Weisblum, B., and Goodfriend, T. L., 1970, Preparation and properties of iodinated angiotensins, Biochem. Pharmacol. 19:651–662.PubMedGoogle Scholar
  202. Lissitzky, S., Fayet, G., and Verrier, B., 1973, Thyroid-stimulating hormone binding to cultured thyroid cells, FEBS Letters 29:20–24.PubMedGoogle Scholar
  203. Livingston, J. N., Cuatrecasas, P., and Lockwood, D. H., 1972, Insulin insensitivity of large fat cells, Science 177:626–628.PubMedGoogle Scholar
  204. Makino, S., Reynolds, J. A., and Tanford, C., 1973, The binding of deoxycholate and triton X-100 to proteins, J. Biol. Chem. 248:4926–4932.PubMedGoogle Scholar
  205. Malbon, C. C., and Zull, J. E., 1974, Interactions of parathyroid hormone and plasma membranes from rat kidney, Biochem. Biophys. Res. Commun. 56:952–958.PubMedGoogle Scholar
  206. Manley, S. W., Bourke, J. R., and Hawker, R. W., 1972, Reversible binding of labelled and non-labelled thyrotrophin by intact thyroid tissue in vitro, J. Endocrinol. 55: 555–563.PubMedGoogle Scholar
  207. Marinetti, G. V., Shatz, L., and Reilly, K., 1972, Hormone-membrane interactions, in: Insulin Action (I. B. Fritz, ed.), pp. 207–276, Academic Press, New York.Google Scholar
  208. Martin, S., Levey, B. A., and Levey, G. S., 1973, Development of the cardiac beta adrenergic receptor in fetal rat heart, Biochem. Biophys. Res. Commun. 54:949–954.PubMedGoogle Scholar
  209. Marx, S. J., Woodard, C. J., and Aurbach, G. D., 1972a, Calcitonin receptors of kidney and bone, Science 178:999–1001.PubMedGoogle Scholar
  210. Marx, S. J., Fedak, S. A., and Aurbach, G. D., 1972b, Preparation and characterization of a hormone-responsive renal plasma membrane fraction, J. Biol. Chem. 247: 6913–6918.PubMedGoogle Scholar
  211. Marx, S. J., Woodard, C., Aurbach, G. D., Glossmann, H., and Keutmann, H. T., 1973, Renal receptor for calcitonin: Binding and degradation of hormone, J. Biol. Chem. 248:4797–4802.PubMedGoogle Scholar
  212. Means, A. R., and Vaitukaitis, J., 1972, Peptide hormone “receptors”: Specific binding of 3H-FSH to testis, Endocrinology 90:39–46.PubMedGoogle Scholar
  213. Megyesi, K., Kahn, C. R., Roth, J., Froesch, E. R., Humbel, R. E., Zapf, J., and Neville, D. M., Jr., 1974a, Insulin and non-suppressible insulin-like activity (NSILA-s): Evidence for separate plasma membrane receptor sites, Biochem. Biophys. Res. Commun. 57:307–315.PubMedGoogle Scholar
  214. Megyesi, K., Kahn, C. R., Roth, J., and Gorden, P., 1974b, Hypoglycemia in association with extrapancreatic tumors: Demonstration of elevated plasma NSILA-s by a new radioreceptor assay, J. Clin. Endocrinol. Metal., 38:931–934.Google Scholar
  215. Miyachi, Y., Mecklenburg, R. S., Hansen, J. W., and Lipsett, M. F., 1973, Metabolism of LHRH, Clin. Res. 21:45.Google Scholar
  216. Monod, J., Changeux, J., and Jacob, F., 1963, Allosteric proteins and cellular control systems, J. Mol. Biol. 6:306–329.PubMedGoogle Scholar
  217. Monod, J., Wyman, K., and Changeux, J., 1965, On the nature of allosteric transitions: A plausible model, J. Mol. Biol. 12:88–118.PubMedGoogle Scholar
  218. Moore, N., and Peterson, R. E., 1973, Purification and properties of gonadotropin receptors in the plasma membrane of bovine corpora lutea, in: 55th Annual Meeting of the Endocrine Society, Chicago, June 20–23, 1973, p. A–189, J. B. Lippincott, Philadelphia.Google Scholar
  219. Moore, W. V., and Wolff, J., 1974, TSH binding to beef thyroid membranes: Relation to adenylate cyclase activity, J. Biol. Chem. 249:6255–6263.PubMedGoogle Scholar
  220. Morell, B., and Froesch, E. R., 1973, Fibroblast as an experimental tool in metabolic and hormone studies. II. Effects of insulin and nonsuppressible insulin-like activity (NSILA-S) on fibroblasts in culture, Europ. J. Clin. Invest. 3:119–123.PubMedGoogle Scholar
  221. Morgat, J. L., Hung, L. T., Fromageot, P., Bockaert, J., Imbert, M., and Morel, F., 1970, Peptide hormone interactions at the molecular level—Preparation of highly labeled 3H-oxytocin, J. Labelled Compounds 6:276–284.Google Scholar
  222. Morgat J. L. Hung L. T. Pradelles P. Fermandjian S. Menez A. Bouet F. and Fromageot P. 1972 Marquage radioactif des polypeptides hormonaux: Ocytocine arginine-Vasopressine lysine-vasopressine angiotensine I et II in: Hormones Pancreatiques Hormones de l’Eau et des Electrolytes pp. 361–384 I.N.S.E.R.M. Paris.Google Scholar
  223. Morrison, M., 1970, Iodination of tyrosine: Isolation of lactoperoxidase (bovine), in: Methods in Enzymology (H. Tabor, and C. W. Tabor, eds.), pp. 653–657, Academic Press, New York.Google Scholar
  224. Morrison, M., and Bayse, G. S., 1970, Analysis of iodination by lactoperoxidase, Biochemistry 9:2995–3000.PubMedGoogle Scholar
  225. Moudgal, N. R., Moyle, W. R., and Greep, R. O., 1971, Specific binding of luteinizing hormone to Leyding tumor cells, J. Biol. Chem. 246:4983–4986.PubMedGoogle Scholar
  226. Neville, D. M., Jr., and Kahn, C. R., 1974, Isolation of plasma membranes for cell surface membrane receptor studies, in Methods in Molecular Biology, Vol. 5, Subcellular Particles, Structures and Organelles (A. I. Laskin, and J. A. Last, eds.), pp. 57–85, Marcel Dekker, New York.Google Scholar
  227. Neville, D. M., Jr., Kahn, C. R., Soll, A., and Roth, J., 1973, Plasma membrane insulin receptor regulation by genetic, metabolic, and hormonal factors, in: Protides of the Biological Fluids—21st Colloquium (H. Peeters, ed.), pp. 269–273, Pergamon Press, New York.Google Scholar
  228. Newerly, K., and Berson, S. A., 1957, Lack of specificity of insulin-I131:binding by isolated rat diaphragm, Proc. Soc. Exp. Biol. Med. 94:751–755.PubMedGoogle Scholar
  229. Odell, W. D., and Daughaday, W. H. (eds.), 1971, Principles of Competitive Protein-Binding Assays, Lippincott, Philadelphia.Google Scholar
  230. Oelz, O., Froesch, E. R., Bunzli, H. F., Humbel, R. E., and Ritschard, W. F., 1972, Antibody-suppressible and nonsuppressible insulin-like activities, in: Handbook of Physiology, Endocrinology I: Endocrine Pancreas (D. F. Steiner, and N. Freinkel, eds.), pp. 685–702, American Physiological Society, Washington, D.C.Google Scholar
  231. Oka, T., and Topper, Y. J., 1971, Insulin-sepharose and the dynamics of insulin action, Proc. Natl. Acad. Sci. 68:2066–2068.PubMedGoogle Scholar
  232. Oka, T., and Topper, Y. J., 1972, Dyanmics of insulin action on mammary epithelium, Nature New Biol. 239:216–217.PubMedGoogle Scholar
  233. Olefsky, J., and Reaven, G., 1974, Decreased insulin binding to lymphocytes from diabetic subjects, Clin. Res. 22:129A.Google Scholar
  234. Olefsky, J. M., Johnson, J., Liu, F., Edwards, P., and Bauer, S., 1974a, A comparison of 125I-insulin binding to isolated rat hepatocytes and liver membranes, submitted for publication.Google Scholar
  235. Olefsky, J. M., Jen, P., and Reaven, G. M., 1974b, Insulin binding to isolated human adipocytes, Diabetes 23:565–571.PubMedGoogle Scholar
  236. Pastan, I., Roth, J., and Macchia, V., 1966, Binding of hormone to tissue: The first step in polypeptide hormone action, Proc. Natl. Acad. Sci. 56:1802–1809.PubMedGoogle Scholar
  237. Pohl, S. L., 1972, Glucagon receptor, in: The Role of Membranes in Metabolic Regulation (M. A. Mehlman, and R. W. Hanson, eds.), pp. 349–365, Academic Press, New York.Google Scholar
  238. Pohl, S. L., Birnbaumer, L., and Rodbell, M., 1971a. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties, J. Biol. Chem. 246: 1849–1856.PubMedGoogle Scholar
  239. Pohl, S. L., Krans, M. J., Kozyreff, V., Birnbaumer, L., and Rodbell, M., 1971b, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. VI. Evidence for a role of membrane lipids, J. Biol. Chem. 246:4447–4454.PubMedGoogle Scholar
  240. Pohl, S. L., Krans, H. M. J., Birnbaumer, L., and Rodbell, M., 1972, Inactivation of glucagon by plasma membranes of rat liver, J. Biol. Chem. 247:2295–2301.PubMedGoogle Scholar
  241. Poirier, G., Labrie, F., Barden, N., and Lemaire, S., 1972, Thyrotropin-releasing hormone receptor: Its partial purification from bovine anterior pituitary gland and its close association with adenyl cyclase, FEBS Letters 20:283–286.PubMedGoogle Scholar
  242. Posner, B. I., 1972, Insulin specific receptors in human placenta, Clin. Res. 20:922.Google Scholar
  243. Posner, B. I., 1974, Insulin receptors in human and animal placental tissue, Diabetes 23:209–217.PubMedGoogle Scholar
  244. Posner, B. I., Kelly, P. A., and Friesen, H. G., 1974, Induction of a lactogenic receptor in rat liver: Influence of estrogen and the pituitary, Proc. Natl. Acad. Sci. 71:2407–2410.PubMedGoogle Scholar
  245. Rao, C. V., and Saxena, B. B., 1973, Gonadotropin receptors in the plasma membranes of rat luteal cells, Biochim. Biophys. Acta 313:372–389.PubMedGoogle Scholar
  246. Reichert, L. E., and Bhalla, V. K., 1974, Development of a radioligand tissue receptor assay for human follicle-stimulating hormone, Endocrinology 94:483–491.PubMedGoogle Scholar
  247. Reichert, L. E., Leidenberger, F., and Trowbridge, C. G., 1973, Studies on luteinizing hormone and its subunits; development and application of a radioligand receptor assay and properties of the hormone-receptor interaction, Recent Prog. Horm. Res. 29:497–532.PubMedGoogle Scholar
  248. Renner, R., 1973, Evidence for an insulin receptor in muscle, FEBS Letters 32:87–90.PubMedGoogle Scholar
  249. Repke, D. W., and Zull, J. E., 1972, Studies with tritiated polypeptide hormones. II. Biological and chemical properties of tritiated acetamidino-insulin, J. Biol. Chem. 247:2189–2194.PubMedGoogle Scholar
  250. Reynolds, J. A., Herbert, S., Polet, H., and Steinhardt, J., 1967, The binding of divers detergent anions to bovine serum albumin, Biochemistry 6:937–947.PubMedGoogle Scholar
  251. Robinson, C. A., Jr., Boshell, B. R., and Reddy, W. J., 1971, The binding of glucagon and insulin to plasma membranes, Diabetes 20:340–341 (Suppl. 1).Google Scholar
  252. Robinson, C. A., Jr., Boshell, B. R., and Reddy, W. J., 1972, Insulin binding to plasma membranes, Biochim. Biophys. Acta 290:84–91.PubMedGoogle Scholar
  253. Robinson, G. A., Butcher, R. W., and Sutherland, E. W., 1968, Cyclic AMP, Ann. Rev. Biochem. 37:149–174.Google Scholar
  254. Rodbard, D., 1973a, Mathematics of hormone-receptor interaction. I. Basic principles, in: Receptors for Reproductive Hormones (B. W. O’Malley and A. R. Means, eds.), pp. 289–326, Plenum, New York.Google Scholar
  255. Rodbard, D., 1973b, Theory of hormone-receptor interaction. III. The endocrine target cell as a quantal response unit: A general control mechanism, in: Receptors for Reproductive Hormones (B. W. O’Malley and A. R. Means, eds.), pp. 342–364, Plenum, New York.Google Scholar
  256. Rodbard, D., and Bertino, R. E., 1973, Theory of radioimmunoassays and hormone-receptor interactions. II. Simulation of antibody divalency, cooperativity and allosteric effects, in: Receptors for Reproductive Hormones (B. W. O’Malley and A. R. Means, eds.), pp. 327–341, Plenum, New York.Google Scholar
  257. Rodbell, M., 1964, Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis, J. Biol. Chem. 235:375.Google Scholar
  258. Rodbell, M., 1973a, The problem of identifying the glucagon receptor, Fed. Proc. 32: 1854–1858.PubMedGoogle Scholar
  259. Rodbell, M., 1973b, Molecular mechanisms of hormone receptors, Neurosci. Res. Prog. Bull. 11:211–215.Google Scholar
  260. Rodbell, M., Birnbaumer, L., and Pohl, S. L., 1969, Hormones, receptors, and adenyl cyclase activity in mammalian cells, in: The Role of Adenyl Cyklase 3′,5′-AMP in Biological Systems (T. W. Rall, M. Rodbell, and P. Condliffe, eds.), pp. 59–102, NIH Fogarty International Center Proceedings No. 4, National Institutes of Health, Bethesda, Md.Google Scholar
  261. Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L., 1971a. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. III. Binding of glucagon: Method of assay and specificity, J. Biol. Chem. 246:1861–1871.PubMedGoogle Scholar
  262. Rodbell, M., Krans, H. M. J., Pohl, S. L., and Birnbaumer, L., 1971b, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanyl nucleotides on binding of 125I-glucagon, J. Biol. Chem. 246:1872–1876.PubMedGoogle Scholar
  263. Rodbell, M, Birnbaumer, L., Pohl, S. L., and Krans, H. M. J., 1971c, The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action, J. Biol. Chem. 246:1877–1882.PubMedGoogle Scholar
  264. Rodbell, M., Birnbaumer, L., Pohl, S. L., and Sundby, F., 1971d, The reaction of glucagon with its receptor: Evidence for discrete regions of activity and binding in the glucagon molecule, Proc. Natl. Acad. Sci. 68:909–913.PubMedGoogle Scholar
  265. Rodbell, M., Lin, M. C., and Salomon, Y., 1974, Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system, J. Biol. Chem. 249:59–65.PubMedGoogle Scholar
  266. Roth, J., 1973, Peptide hormone binding to receptors: A review of direct studies in vitro, Metabolism 22:1059–1073.PubMedGoogle Scholar
  267. Roth, J., Glick, S. M., Klein, L. A., and Gorden, P., 1966, Specific antibody to vasopressin in man, J. Clin. Endocrinol. Metab. 26:671–675.PubMedGoogle Scholar
  268. Roy, C., Bockaert, J., Rajerison, R., and Jard, S., 1973, Oxytocin receptor in frog bladder epithelial cells: Relationship of [3H]oxytocin binding to adenylate cyclase activation, FEBS Letters 30:329–334.PubMedGoogle Scholar
  269. Rubalcava, B., and Rodbell, M., 1973, The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase, J. Biol. Chem. 248:3831–3837.PubMedGoogle Scholar
  270. Saez, J. M., Dazord, A., Morera, A. M., and Bertrand, J., 1973, Human adrenocortical virilizing tumor: Unresponsiveness to ACTH in the presence of specific ACTH binding, in: 55th Annual Meeting of the Endocrine Society, Chicago, June 20–23, 1973, p. A–262, J. B. Lippincott, Philadelphia.Google Scholar
  271. Scatchard, G., 1949, The attractions of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51:660–672.Google Scholar
  272. Scatchard, G., Coleman, J. S., and Shen, A. L., 1957, Physical chemistry of protein solutions. VII. The binding of some small anions to serum albumin, J. Am. Chem. Soc. 79:12–20.Google Scholar
  273. Schaumberg, B. P., and Bojesen, E., 1968, Specificity and thermodynamic properties of the corticosteroid binding to a receptor of rat thymocytes in vitro, Biochim. Biophys. Acta 170:172–188.Google Scholar
  274. Schimmer, B. P., Ueda, K., and Sato, G. H., 1968, Site of action of adrenocorticotropic hormone (ACTH) in adrenal cell cultures, Biochem. Biophys. Res. Commun. 32: 806–811.PubMedGoogle Scholar
  275. Schramm, M., Feinstein, H., Nairn, E., Lang, M., and Lasser, M., 1972, Epinephrine binding to the catecholamine receptor and activation of the adenylate cyclase in erythrocyte membranes, Proc. Natl. Acad. Sci. 69:523–527.PubMedGoogle Scholar
  276. Schwartz, I., Rasmussen, L. H., Schoessler, M. A., Silver, L., and Fong, C., 1960, Relation of chemical attachment to physiological action of vasopressin, Proc. Natl. Acad. Sci. 46:1288–1298.PubMedGoogle Scholar
  277. Schwartz, J., Nutting, D. F., Goodman, H. M., Kostyo, J. L., and Fellows, R. E., 1973, Growth hormone covalently bound to sepharose. II. Study of the biological activity of a growth hormone-sepharose complex in adipose tissue and diaphragm muscle, Endocrinology 92:439–445.PubMedGoogle Scholar
  278. Schwartz, R. H., Bianco, H. R., Handwerger, B. S., and Kahn, C. R., 1975, A demonstration that monocytes rather than lymphocytes are the insulin binding cells in human peripheral blood mononuclear leukocyte preparations: Implications for studies of insulin-resistant states in man, Proc. Natl. Acad. Sci., in press.Google Scholar
  279. Schwartz, S., Bell, J., Rechnitz, S., and Rabinowitz, D., 1973, Binding of human FSH and its subunits to rat testis, Europ. J. Clin. Invest. 3:475–481.PubMedGoogle Scholar
  280. Shiu, R. P. C., Kelly, P. A., and Friesen, H. G., 1973, Radioreceptor assay for prolactin and other lactogenic hormones, Science 180:968–971.PubMedGoogle Scholar
  281. Shlatz, L., and Marinetti, G. V., 1972, Hormone-calcium interactions with the plasma membrane of rat liver cells, Science 176:175–177.PubMedGoogle Scholar
  282. Soderman, D. D., Germershausen, J., and Katzen, H. M., 1973, Affinity binding of intact fat cells and their ghosts to immobilized insulin, Proc. Natl. Acad. Sci. 70:792–796.PubMedGoogle Scholar
  283. Soll, A. H., Goldfine, I. D., Roth, J., Kahn, C. R., and Neville, D. M., Jr., 1974a, Thymic lymphocytes in obese (ob/ob) mice: A mirror of the insulin receptor defect in liver and fat, J. Biol. Chem. 249:4127–4131.PubMedGoogle Scholar
  284. Soll, A. H., Kahn, C. R., and Neville, D. M., Jr., 1974b, Defective insulin binding in the obese hyperglycemic mouse (ob/ob): Characterization of the insulin receptor, J. Biol. Chem., in press.Google Scholar
  285. Soloff, M. S., and Swartz, T. L., 1973, Characterization of a proposed oxytocin receptor in rat mammary gland, J. Biol. Chem. 248:6471–6478.PubMedGoogle Scholar
  286. Soloff, M. S., and Swartz, T. L., 1974, Characterization of a proposed oxytocin receptor in uterus of the rat and sow, J. Biol. Chem. 249:1376–1381.PubMedGoogle Scholar
  287. Soloff, M. S., Swartz, T. L., and Saffran, M., 1972, Specific uptake of radioactivity from 3H-oxytocin by surviving segments of mammary gland, Endocrinology 91:213–216.PubMedGoogle Scholar
  288. Soloff, M., Swartz, T., Morrison, M., and Saffran, M., 1973, Oxytocin receptors: Oxytocin analogs, but not prostaglandins, compete with 3H-oxytocin for uptake by rat uterus, Endocrinology 92:104–107.PubMedGoogle Scholar
  289. Spona, J., 1974, LH-RH interaction with the pituitary plasma membrane is affected by sex steroids, FEBS Letters 39:221–224.PubMedGoogle Scholar
  290. Stadie, W. C., Haugaard, N., Marsh, J. B., and Hills, A. G., 1949, The chemical combination of insulin with muscle (diaphragm) of normal rat, Am. J. Med. Sci. 218:265–274.PubMedGoogle Scholar
  291. Stadie, W. C., Haugaard, N., and Marsh, J. B., 1951, Factors influencing the combination of insulin with muscle from normal rats, J. Biol. Chem. 189:53–58.PubMedGoogle Scholar
  292. Stadie, W. C., Haugaard, N., and Vaughn, M., 1953, The quantitative relation between insulin and its biological activity, J. Biol. Chem. 200:745–751.PubMedGoogle Scholar
  293. Steinberger, A., Yang, K. P., and Ward, D. N., 1973, Recovery of LH binding activity in cultures of enzymatically isolated interstitial cells, in: 55th Annual Meeting of the Endocrine Society, Chicago, June 20–22, 1973, A–272, J. B. Lippincott, Philadelphia.Google Scholar
  294. Stouffer, R. L., Tyrey, L., and Schomber, D. W., 1974, Comparison of gonadotropin receptor characteristics in moderately and highly differentiated porcine granulosa cells before and after monolayer culture using 125I-hCG, in: 56th Annual Meeting of the Endocrine Society, Atlanta, June 19–22, 1974, p. A–111, J. B. Lippincott, Philadelphia.Google Scholar
  295. Sutcliffe, H. S., Martin, T. J., Eisman, J. A., and Pilczyk, R., 1973, Binding of parathyroid hormone to bovine kidney-cortex plasma membranes, Biochem. J. 134:913–921.PubMedGoogle Scholar
  296. Sutherland, E. W., and Rall, T. W., 1960, The relation of adenosine-3′,5′-phosphate and Phosphorylase to the actions of catecholamines and other hormones, Pharmacol. Rev. 12:265–299.Google Scholar
  297. Suzuki, F., Daikuhara, Y., Ono, M., and Takeda, Y., 1971, Studies on the mode of action of insulin: Properties and biological activity of an insulin-dextran complex, Endocrinology 90:1220–1230.Google Scholar
  298. Tarui, S., Saito, Y., Suzuki, F., and Takeda, Y., 1972, Parallel stimulation of sugar transport and glycogen formation by a synthetic insulin-dextran complex in diaphragm, Endocrinology 91:1442–1446.PubMedGoogle Scholar
  299. Thompson, E. E., Freychet, P., and Roth, J., 1972, Monoiodo-oxytocin: Demonstration of its biological activity and specific binding to isolated fat cells, Endocrinology 91:1199–1205.PubMedGoogle Scholar
  300. Thorell, J. I., and Johansson, B. G., 1972, High-specific-activity labelling of glycoprotein hormones by means of lactoperoxidase (LFO), in: Structure-Activity Relationships of Protein and Polypeptide Hormones (M. Margoulies and F. C. Greenwood, eds.), pp. 531–535, Excerpta Medica, Amsterdam.Google Scholar
  301. Tomasi, V., Koretz, S., Ray, T. K., Dunnick, J., and Marinetti, G. V., 1970, Hormone action at the membrane level. 11. The binding of epinephrine and glucagon to the rat liver plasma membrane, Biochim. Biophys. Acta 211:31–42.PubMedGoogle Scholar
  302. Tsuruhara, T., Dufau, M. L., Hickman, J., and Catt, K. J., 1972a, Biological properties of hCG after removal of terminal sialic acid and galactose residues, Endocrinology 91:296–301.PubMedGoogle Scholar
  303. Tsuruhara, T., Van Hall, E. V., Dufau, M. L., and Catt, K. J., 1972b, Ovarian binding of intact and desialylated hCG in vivo and in vitro, Endocrinology 91:463–469.PubMedGoogle Scholar
  304. Tsushima, T., and Friesen, H. G., 1973, Radioreceptor assay for growth hormone, J. Clin. Endocrinol. Metab. 37:334–337.PubMedGoogle Scholar
  305. Turkington, R. W., 1970, Stimulation of RNA synthesis in isolated mammary cells by insulin and prolactin bound to sepharose, Biochem. Biophys. Res. Commun. 41: 1362–1367.PubMedGoogle Scholar
  306. Turkington, R. W., Majumder, G. C., Kadohama, N., Maclndoe, J. H., and Frantz, W. L., 1973, Hormonal regulation of gene expression in mammary cells, Recent Prog. Horm. Res. 29:417–455.PubMedGoogle Scholar
  307. Van Wyk, J. J., Underwood, L. E., Hintz, R. L., Voina, S. J., and Weaver, R. P., 1974, The somatomedins: A family of insulin-like hormones under growth hormone control, Recent Prog. Horm. Res. 30: 259–295.PubMedGoogle Scholar
  308. Venter, J. C., Dixon, J. E., Maroko, P. R., and Kaplan, N., 1972, Biologically active catecholamines covalently bound to glass beads, Proc. Natl. Acad. Sci. 69:1141–1145.PubMedGoogle Scholar
  309. Verrier, B., Fayet, G., and Lissitzky, S., 1974, Thyrotropin-binding properties of isolated thyroid cells and their purified plasma membranes, Europ. J. Biochem. 42:355–365.PubMedGoogle Scholar
  310. Walter, R., Schwartz, I. L., Hechter, O., Dousa, T., and Hoffman, P. L., 1972, Bromo-acetyl-oxytocin, an irreversible inhibitor of neurohypophyseal hormone-stimulated adenylate cyclase, and a possible affinity label for hormone receptors, Endocrinology 91:39–48.PubMedGoogle Scholar
  311. Weder, H. G., Schildknecht, J., Lutz, R. A., and Kesselring, P., 1974, Determination of binding parameters from Scatchard plots, Europ. J. Biochem. 42:475–481.PubMedGoogle Scholar
  312. Wilber, J. F., and Seibel, M. J., 1973, Thyrotropin-releasing hormone interactions with an anterior pituitary membrane receptor, Endocrinology 92:888–893.PubMedGoogle Scholar
  313. Winand, R. J., and Kohn, L. D., 1972, The binding of [3H]thyrotropin and an 3H-labeled exophthalmogenic factor by plasma membranes of retro-orbital tissue, Proc. Natl. Acad. Sci. 69:1711–1815.PubMedGoogle Scholar
  314. Wohltmann, H. J., and Narahara, H. T., 1966, Binding of insulin-131I by isolated frog sartorius muscles, J. Biol. Chem. 241:4931–4939.PubMedGoogle Scholar
  315. Wohltmann, H. J., and Narahara, H. T., 1968, Studies related to the concept that a thiol disulfide interchange is involved in the action of insulin on muscle cells, Biochim. Biophys. Acta 150:500–508.PubMedGoogle Scholar
  316. Wolff, J., and Cook, G. H., 1973, Activation of thyroid membrane adenylate cyclase by purine nucleotides, J. Biol. Chem. 248:350–355.PubMedGoogle Scholar
  317. Wolfsen, A. R., Mclntyre, H. B., and Odell, W. D., 1972, Adrenocorticopin measurement by competitive binding receptor assay, J. Clin. Endocrinol. Metab. 34:684–689.PubMedGoogle Scholar
  318. Woodward, G., and Campbell, B. J., 1973, Antidiuretic hormone interaction with renal membranes, Clin. Res. 21:335.Google Scholar
  319. Yalow, R. S., and Berson, S. A., 1960, Immunoassay of endogenous plasma insulin in man, J. Clin. Invest. 39:1157–1175.PubMedGoogle Scholar
  320. Yang, K. P., and Ward, D. N., 1972, Iodination of ovine luteinizing hormone and its subunits, Endocrinology 91:317–320.PubMedGoogle Scholar
  321. Yip, C. Y., 1972, Preparation of 3H-insulin and its binding to liver plasma membranes, in: Insulin Action (I. B. Fritz, ed.), pp. 115–135, Academic Press, New York.Google Scholar
  322. Zull, J. E., and Repke, D. W., 1972, Studies with tritiated polypeptide hormones. I. Preparation and properties of an active highly tritiated derivative of parathyroid hormone: Acetamidino-parathyroid hormone, J. Biol. Chem. 247:2183–2188.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • C. Ronald Kahn
    • 1
  1. 1.Diabetes Branch National Institute of Arthritis, Metabolism, and Digestive DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations