Metabolism, Heat Transfer and Water Loss under Hypobaric Conditions

  • Stanley P. Burg
  • Robert Kosson
Part of the Nato Advanced Study Institutes Series book series (NSSA, volume 46)


Evaporative cooling is the dominant mode of heat transfer under hypobaric conditions. This creates a dilemma in water conservation for plant products. Can they dispel their respiratory heat and remain cold without drying excessively, or does water loss ultimately limit storage? A nodal model for heat transfer is used to analyze this problem. The present report summarizes results obtained with this model, and in addition discusses several other important differences between hypobaric and atmospheric pressure storage.


Heat Transfer Mass Transfer Coefficient Skin Resistance Hypobaric Condition Chrysanthemum Cutting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharoni, N., M. Lieberman and H. D. Sisler, Patterns of ethylene production in senescing leaves. Plant Physiol. 64: 796 (1979).PubMedCrossRefGoogle Scholar
  2. 2.
    Baur, J. R. and P. W. Morgan, Effects of Picloram and ethylene on leaf movement in Huisache and Mesquite Seedlings, Plant Physiol. 44:831 (1969).PubMedCrossRefGoogle Scholar
  3. 3.
    Ben-Yehoshua, S. and I. Eaks, Ethylene production and abscission of fruit and leaves of oranges, Bot. Gaz. 131:144 (1970).CrossRefGoogle Scholar
  4. 4.
    Ben-Yehoshua, S., R. N. Robertson and J. B. Biale, Respiration and internai atmosphere of avocado fruit, Plant Physiol. 38: 194 (1963).PubMedCrossRefGoogle Scholar
  5. 5.
    Beyer, E. M., Jr., and P. W. Morgan, Abscission: The role of ethylene modification of auxin transport, Plant Physiol. 48: 208 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    Burg, S. P. and E. A. Burg, Role of ethylene in fruit ripening, Plant Physiol. 37: 179 (1962)PubMedCrossRefGoogle Scholar
  7. 7.
    Burg, S. P. and E. A. Burg, Gas exchange in fruits, Physiol. Plantarum 18:870 (1965).CrossRefGoogle Scholar
  8. 8.
    Burg, S. P. and E. A. Burg, Fruit storage at subatmospheric pressure, Science 153: 314 (1966).PubMedCrossRefGoogle Scholar
  9. 9.
    Burg, S. P. and E. A. Burg, The interaction between auxin and ethylene and its role in plant growth, Proc. Natl. Acad. Sci. USA 55: 262 (1966).PubMedCrossRefGoogle Scholar
  10. 10.
    Burg, S. P., E. A. Burg and R. Marks, Relationship of solute leakage to solution tonicity in fruits and other plant tissues, Plant Physiol. 39:185 (1964).PubMedCrossRefGoogle Scholar
  11. 11.
    Coster, H. G. L., E. Steudle and U. Zimmerman, Trugor pressure sensing in plant cell membranes, Plant Physiol. 58: 636 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    Dagley, S. and C. N. Hinshelwood, Physicochemical aspects of growth. I. Quantitative dependence of the growth rate of Bact. lactic aerogenes on the carbon dioxide content of the gas atmosphere, J. Chem. Soc. 1938: 936 (1938).Google Scholar
  13. 13.
    DeVaux, H., Etude experimentale sur l’aeration des tissues massifs, Ann. Sci. Nat. Bot. XIV: 297 (1891)Google Scholar
  14. 14.
    Enoch, S. and Z. Glinka, The effect of cell’s turgidity on influx and efflux of potassium ion, Plant Physiol. 65:S-61 (1980).Google Scholar
  15. 15.
    Erez, A., The effect of different portions of the sunlight spectrum on ethylene evolution in peach (Prunus persica) apices, Physiol. Plantarum 39: 285 (1977).CrossRefGoogle Scholar
  16. 16.
    Fockens, F. H. and H. F. Meffert, Biophysical properties of horticultural products as related to loss of moisture during cooling down. J. Sci. Food Agric. 23: 285 (1972).CrossRefGoogle Scholar
  17. 17.
    Forsyth, F. R., I. V. Hall and H. J. Lightfoot, Diffusion of CO2, O2 and ethylene in cranberry fruit, Hort Science 8:45 (1973).Google Scholar
  18. 18.
    Goeschl, J. D., L. Rappaport and H. K. Pratt, Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress, Plant Physiol. 41:877 (1966).PubMedCrossRefGoogle Scholar
  19. 19.
    Gutknecht, J., Salt transport in Valonia: inhibition of potas-sium uptake by small hydrostatic pressures, Science 160:68 (1968).PubMedCrossRefGoogle Scholar
  20. 20.
    Hanan, J. J., Experiments with CA storage of carnations, Proc Amer. Soc. Hort. Sci. 90:370 (1967).Google Scholar
  21. 21.
    Hastings, D. F. and J. Gutknecht, Turgor pressure regulation: modulation of active potassium transport by hydrostatic pressure gradients, in: U. Zimmerman and J. Dainty, Eds., “Membrane Transport in Plants,” Springer-Verlag, Berlin, pp 79 (1974).CrossRefGoogle Scholar
  22. 22.
    Helder, R. J., The loss of substances by cells and tissues (salt glands), Handb. d. Pflanzenphysiol. 2:468 (1956).Google Scholar
  23. 23.
    Hellebust, J. A., Osmoregulation. Annu. Rev. Plant Physiol. 27: 485 (1976).CrossRefGoogle Scholar
  24. 24.
    Holmgren, P., P. G. Jarvis and M. S. Jarvis, Resistance to carbon dioxide and water vapor transfer in leaves of dif-ferent plant species, Physiol Plantarurn 18:557 (1965).CrossRefGoogle Scholar
  25. 25.
    Horrocks, R. L., Wax and the water vapor permeability of apple cuticle, Nature 203: 547 (1964).CrossRefGoogle Scholar
  26. 26.
    Kang, B. G. and P. M. Ray, Ethylene and carbon dioxide as mediators in the response of the bean hypocotyl hook to light and auxins, Planta 87:206 (1969).CrossRefGoogle Scholar
  27. 27.
    Kosiyachinda, S. and R. E. Young, Ethylene production in relation to the initiation of respiratory climacteric in fruits, Plant and Cell Physiol. 16:595 (1975).Google Scholar
  28. 28.
    Kreith, F., “Principles of Heat Transfer,” International Textbook Co., Scranton, PA, p. 500 (1958).Google Scholar
  29. 29.
    Lipe, J. A. and P. W. Morgan, Ethylene as a regulator of young fruit abscission, Plant Physiol. 50:S-18 (1972).Google Scholar
  30. 30.
    Lipe, J. A. and P. W. Morgan, Ethylene a regulator of young fruit abscission, Plant Physiol. 51:949 (1973).PubMedCrossRefGoogle Scholar
  31. 31.
    Luttge, U., E. Ball and H. Greenway, Effects of water and turgor potential on malate efflux from leaf slices of Kalanchoe diagremontiana, Plant Physiol. 60:521 (1977).PubMedCrossRefGoogle Scholar
  32. 32.
    Lyons, J. M., W. B. McGlasson and H. K. Pratt, Ethylene production, respiration and internal gas concentrations in cantaloupe fruits at various stages of maturity, Plant Physiol. 37: 31 (1962).PubMedCrossRefGoogle Scholar
  33. 33.
    McAdams, W. A., “Heat Transmission, “Third Edition, McGraw-Hill Book Co., Inc., New York, pp 172 (1954).Google Scholar
  34. 34.
    Morgan, P. W. and J. R. Baur, Involvement of ethylene in picloram-induced leaf movement response, Plant Physiol. 46; 655 (1970).PubMedCrossRefGoogle Scholar
  35. 35.
    Morgan, P. W. and J. A. McAfee, A comparison of internal ethylene levels with production rates in various tissues of the vegetative cotton plant, Plant Physiol. 45:S-32 (1970).CrossRefGoogle Scholar
  36. 36.
    Moreshet, S. and G. C. Green, Photosynthesis and diffusion conductance of the Valencia orange fruit under field conditions, J. Exptl. Bot. 31:15 (1980).CrossRefGoogle Scholar
  37. 37.
    Munch, E., Die Stoffbewegungen in der pflanze, Verlag Gustav, Fischer, Jena, p. 23 (1930).Google Scholar
  38. 38.
    Pappenheimer, A. M. and G. A. Hottle, Effect of certain purines and CO2 on growth of strain of group A haemolytic Streptococcus, Proc. Soc. Expt. Biol. Med. 44:645 (1940).Google Scholar
  39. 39.
    Pharr, D. M. and A. A. Kattan, Effect of air flow rate, storage temperature and harvest maturity on respiration and ripening of tomato fruits, Plant Physiol. 48:53 (1971).PubMedCrossRefGoogle Scholar
  40. 40.
    Potter, N. N., “Food Science,” Avi Publishing Company, Westport, Conn., pps. 204 (1973).Google Scholar
  41. 41.
    Pratt, H. K. and J. D. Goeschl, The role of ethylene in fruit ripening, in: F. W. Wightman and G. Setterfield, eds., “Biochemistry and Physiology of Plant Growth Substances,” Runge Press, Ltd., Ottawa, Canada, pp. 1295 (1968).Google Scholar
  42. 42.
    Raschke, K., Heat transfer between the plant and environment, Annu. Rev. Plant Physiol. 11:111 (1960).CrossRefGoogle Scholar
  43. 43.
    Ray, P. M., P. B. Green and R. Cleland, Role of turgor in plant cell growth. Nature 239: 163 (1972).CrossRefGoogle Scholar
  44. 44.
    Simon, E. W., Leakage from fruit cells in water, J. Exptl. Bot. 28:1147 (1977).CrossRefGoogle Scholar
  45. 45.
    Simmonds, N. W., “Bananas,” 2nd Ed., Longmans, Green and Co., Ltd., London, p. 222 (1966).Google Scholar
  46. 46.
    Slaytor, R. O. and J. F. Bierhuizen, Transpiration from cotton leaves under a range of environmental conditions in relation to internal and external resistances, Austr J. Biol. Sci. 17:115 (1974).Google Scholar
  47. 47.
    Solomos, T., in press, Respiratory and energy metabolism in relation to senescence, M. Lieberman ed., “Post Harvest Physiology and Crop Preservation,” Plenum Press, New York (1982).Google Scholar
  48. 48.
    Steudle, E. and U. Zimmerman, Turgor pressure regulation in algal cells: pressure dependence of electrical parameters of the membrane in large pressure ranges, in: U. Zimmerman and J. Dainty, eds., “Membrane Transport in Plants,” Springer-Verlag, Berlin, pp.72 (1974).CrossRefGoogle Scholar
  49. 49.
    Trout, S. A., E. G. Hall, R. N. Robertson, F. M. V. Hackney and S. M. Sykes, Studies in the metabolism of apples, I. Preliminary investigations on internal gas composition and its relation to changes in stored Granny Smith apples Austr. J. Expt. Biol. Med. 20–21: 219 (1942).Google Scholar
  50. 50.
    USDA, The commercial storage of fruits, vegetables and florist and nursery stocks, Agr. Handbook No. 66 (1968).Google Scholar
  51. 51.
    Wachter, W., Untersuchungen uber den austritt von zucheraus den zellen der speicherorgane von Allium cepa und Beta vulgaris, Prings. Jahr. fur wiss. Bot. 41:165 (1905).Google Scholar
  52. 52.
    Wardlaw, C. W. and E. R. Leonard, Studies in tropical fruits. IX. The respiration of bananas during ripening at tropical tempratures, Ann. Rev. Botany 4:264 (1940).Google Scholar
  53. 53.
    Woolley, J. T., Potato tuber tissue respiration and ventilation, Plant Physiol. 37:793 (1962)PubMedCrossRefGoogle Scholar
  54. 54.
    Zeroni, M., P. H. Jerie and M. A. Hall, Studies on the movement and distribution of ethylene in Vicia faba L., Planta 134: 119 (1977).CrossRefGoogle Scholar
  55. 55.
    Zimmerman, U. and Steudle, The pressure dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia ultricularis, J. Membrane Biol. 16:331 (1974).CrossRefGoogle Scholar
  56. 56.
    Zimmerman, U., E. Steudle and P. I. Lelkes, Turgor pressure regulation in Valonia utriculares. Effects of cell wall plasticity and auxin, Plant Physiol. 58:605 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Stanley P. Burg
    • 1
  • Robert Kosson
    • 1
  1. 1.Grumman/Dormavac DivisionGrumman-Allied IndustriesWoodburyUSA

Personalised recommendations