Skip to main content

Metabolism, Heat Transfer and Water Loss under Hypobaric Conditions

  • Chapter
Post-Harvest Physiology and Crop Preservation

Part of the book series: Nato Advanced Study Institutes Series ((NSSA,volume 46))

Abstract

Evaporative cooling is the dominant mode of heat transfer under hypobaric conditions. This creates a dilemma in water conservation for plant products. Can they dispel their respiratory heat and remain cold without drying excessively, or does water loss ultimately limit storage? A nodal model for heat transfer is used to analyze this problem. The present report summarizes results obtained with this model, and in addition discusses several other important differences between hypobaric and atmospheric pressure storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni, N., M. Lieberman and H. D. Sisler, Patterns of ethylene production in senescing leaves. Plant Physiol. 64: 796 (1979).

    Article  PubMed  CAS  Google Scholar 

  2. Baur, J. R. and P. W. Morgan, Effects of Picloram and ethylene on leaf movement in Huisache and Mesquite Seedlings, Plant Physiol. 44:831 (1969).

    Article  PubMed  CAS  Google Scholar 

  3. Ben-Yehoshua, S. and I. Eaks, Ethylene production and abscission of fruit and leaves of oranges, Bot. Gaz. 131:144 (1970).

    Article  CAS  Google Scholar 

  4. Ben-Yehoshua, S., R. N. Robertson and J. B. Biale, Respiration and internai atmosphere of avocado fruit, Plant Physiol. 38: 194 (1963).

    Article  PubMed  CAS  Google Scholar 

  5. Beyer, E. M., Jr., and P. W. Morgan, Abscission: The role of ethylene modification of auxin transport, Plant Physiol. 48: 208 (1971).

    Article  PubMed  CAS  Google Scholar 

  6. Burg, S. P. and E. A. Burg, Role of ethylene in fruit ripening, Plant Physiol. 37: 179 (1962)

    Article  PubMed  CAS  Google Scholar 

  7. Burg, S. P. and E. A. Burg, Gas exchange in fruits, Physiol. Plantarum 18:870 (1965).

    Article  CAS  Google Scholar 

  8. Burg, S. P. and E. A. Burg, Fruit storage at subatmospheric pressure, Science 153: 314 (1966).

    Article  PubMed  CAS  Google Scholar 

  9. Burg, S. P. and E. A. Burg, The interaction between auxin and ethylene and its role in plant growth, Proc. Natl. Acad. Sci. USA 55: 262 (1966).

    Article  PubMed  CAS  Google Scholar 

  10. Burg, S. P., E. A. Burg and R. Marks, Relationship of solute leakage to solution tonicity in fruits and other plant tissues, Plant Physiol. 39:185 (1964).

    Article  PubMed  CAS  Google Scholar 

  11. Coster, H. G. L., E. Steudle and U. Zimmerman, Trugor pressure sensing in plant cell membranes, Plant Physiol. 58: 636 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. Dagley, S. and C. N. Hinshelwood, Physicochemical aspects of growth. I. Quantitative dependence of the growth rate of Bact. lactic aerogenes on the carbon dioxide content of the gas atmosphere, J. Chem. Soc. 1938: 936 (1938).

    Google Scholar 

  13. DeVaux, H., Etude experimentale sur l’aeration des tissues massifs, Ann. Sci. Nat. Bot. XIV: 297 (1891)

    Google Scholar 

  14. Enoch, S. and Z. Glinka, The effect of cell’s turgidity on influx and efflux of potassium ion, Plant Physiol. 65:S-61 (1980).

    Google Scholar 

  15. Erez, A., The effect of different portions of the sunlight spectrum on ethylene evolution in peach (Prunus persica) apices, Physiol. Plantarum 39: 285 (1977).

    Article  CAS  Google Scholar 

  16. Fockens, F. H. and H. F. Meffert, Biophysical properties of horticultural products as related to loss of moisture during cooling down. J. Sci. Food Agric. 23: 285 (1972).

    Article  Google Scholar 

  17. Forsyth, F. R., I. V. Hall and H. J. Lightfoot, Diffusion of CO2, O2 and ethylene in cranberry fruit, Hort Science 8:45 (1973).

    CAS  Google Scholar 

  18. Goeschl, J. D., L. Rappaport and H. K. Pratt, Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress, Plant Physiol. 41:877 (1966).

    Article  PubMed  CAS  Google Scholar 

  19. Gutknecht, J., Salt transport in Valonia: inhibition of potas-sium uptake by small hydrostatic pressures, Science 160:68 (1968).

    Article  PubMed  CAS  Google Scholar 

  20. Hanan, J. J., Experiments with CA storage of carnations, Proc Amer. Soc. Hort. Sci. 90:370 (1967).

    Google Scholar 

  21. Hastings, D. F. and J. Gutknecht, Turgor pressure regulation: modulation of active potassium transport by hydrostatic pressure gradients, in: U. Zimmerman and J. Dainty, Eds., “Membrane Transport in Plants,” Springer-Verlag, Berlin, pp 79 (1974).

    Chapter  Google Scholar 

  22. Helder, R. J., The loss of substances by cells and tissues (salt glands), Handb. d. Pflanzenphysiol. 2:468 (1956).

    Google Scholar 

  23. Hellebust, J. A., Osmoregulation. Annu. Rev. Plant Physiol. 27: 485 (1976).

    Article  CAS  Google Scholar 

  24. Holmgren, P., P. G. Jarvis and M. S. Jarvis, Resistance to carbon dioxide and water vapor transfer in leaves of dif-ferent plant species, Physiol Plantarurn 18:557 (1965).

    Article  Google Scholar 

  25. Horrocks, R. L., Wax and the water vapor permeability of apple cuticle, Nature 203: 547 (1964).

    Article  Google Scholar 

  26. Kang, B. G. and P. M. Ray, Ethylene and carbon dioxide as mediators in the response of the bean hypocotyl hook to light and auxins, Planta 87:206 (1969).

    Article  CAS  Google Scholar 

  27. Kosiyachinda, S. and R. E. Young, Ethylene production in relation to the initiation of respiratory climacteric in fruits, Plant and Cell Physiol. 16:595 (1975).

    CAS  Google Scholar 

  28. Kreith, F., “Principles of Heat Transfer,” International Textbook Co., Scranton, PA, p. 500 (1958).

    Google Scholar 

  29. Lipe, J. A. and P. W. Morgan, Ethylene as a regulator of young fruit abscission, Plant Physiol. 50:S-18 (1972).

    Google Scholar 

  30. Lipe, J. A. and P. W. Morgan, Ethylene a regulator of young fruit abscission, Plant Physiol. 51:949 (1973).

    Article  PubMed  CAS  Google Scholar 

  31. Luttge, U., E. Ball and H. Greenway, Effects of water and turgor potential on malate efflux from leaf slices of Kalanchoe diagremontiana, Plant Physiol. 60:521 (1977).

    Article  PubMed  CAS  Google Scholar 

  32. Lyons, J. M., W. B. McGlasson and H. K. Pratt, Ethylene production, respiration and internal gas concentrations in cantaloupe fruits at various stages of maturity, Plant Physiol. 37: 31 (1962).

    Article  PubMed  CAS  Google Scholar 

  33. McAdams, W. A., “Heat Transmission, “Third Edition, McGraw-Hill Book Co., Inc., New York, pp 172 (1954).

    Google Scholar 

  34. Morgan, P. W. and J. R. Baur, Involvement of ethylene in picloram-induced leaf movement response, Plant Physiol. 46; 655 (1970).

    Article  PubMed  CAS  Google Scholar 

  35. Morgan, P. W. and J. A. McAfee, A comparison of internal ethylene levels with production rates in various tissues of the vegetative cotton plant, Plant Physiol. 45:S-32 (1970).

    Article  Google Scholar 

  36. Moreshet, S. and G. C. Green, Photosynthesis and diffusion conductance of the Valencia orange fruit under field conditions, J. Exptl. Bot. 31:15 (1980).

    Article  CAS  Google Scholar 

  37. Munch, E., Die Stoffbewegungen in der pflanze, Verlag Gustav, Fischer, Jena, p. 23 (1930).

    Google Scholar 

  38. Pappenheimer, A. M. and G. A. Hottle, Effect of certain purines and CO2 on growth of strain of group A haemolytic Streptococcus, Proc. Soc. Expt. Biol. Med. 44:645 (1940).

    CAS  Google Scholar 

  39. Pharr, D. M. and A. A. Kattan, Effect of air flow rate, storage temperature and harvest maturity on respiration and ripening of tomato fruits, Plant Physiol. 48:53 (1971).

    Article  PubMed  CAS  Google Scholar 

  40. Potter, N. N., “Food Science,” Avi Publishing Company, Westport, Conn., pps. 204 (1973).

    Google Scholar 

  41. Pratt, H. K. and J. D. Goeschl, The role of ethylene in fruit ripening, in: F. W. Wightman and G. Setterfield, eds., “Biochemistry and Physiology of Plant Growth Substances,” Runge Press, Ltd., Ottawa, Canada, pp. 1295 (1968).

    Google Scholar 

  42. Raschke, K., Heat transfer between the plant and environment, Annu. Rev. Plant Physiol. 11:111 (1960).

    Article  Google Scholar 

  43. Ray, P. M., P. B. Green and R. Cleland, Role of turgor in plant cell growth. Nature 239: 163 (1972).

    Article  Google Scholar 

  44. Simon, E. W., Leakage from fruit cells in water, J. Exptl. Bot. 28:1147 (1977).

    Article  Google Scholar 

  45. Simmonds, N. W., “Bananas,” 2nd Ed., Longmans, Green and Co., Ltd., London, p. 222 (1966).

    Google Scholar 

  46. Slaytor, R. O. and J. F. Bierhuizen, Transpiration from cotton leaves under a range of environmental conditions in relation to internal and external resistances, Austr J. Biol. Sci. 17:115 (1974).

    Google Scholar 

  47. Solomos, T., in press, Respiratory and energy metabolism in relation to senescence, M. Lieberman ed., “Post Harvest Physiology and Crop Preservation,” Plenum Press, New York (1982).

    Google Scholar 

  48. Steudle, E. and U. Zimmerman, Turgor pressure regulation in algal cells: pressure dependence of electrical parameters of the membrane in large pressure ranges, in: U. Zimmerman and J. Dainty, eds., “Membrane Transport in Plants,” Springer-Verlag, Berlin, pp.72 (1974).

    Chapter  Google Scholar 

  49. Trout, S. A., E. G. Hall, R. N. Robertson, F. M. V. Hackney and S. M. Sykes, Studies in the metabolism of apples, I. Preliminary investigations on internal gas composition and its relation to changes in stored Granny Smith apples Austr. J. Expt. Biol. Med. 20–21: 219 (1942).

    Google Scholar 

  50. USDA, The commercial storage of fruits, vegetables and florist and nursery stocks, Agr. Handbook No. 66 (1968).

    Google Scholar 

  51. Wachter, W., Untersuchungen uber den austritt von zucheraus den zellen der speicherorgane von Allium cepa und Beta vulgaris, Prings. Jahr. fur wiss. Bot. 41:165 (1905).

    Google Scholar 

  52. Wardlaw, C. W. and E. R. Leonard, Studies in tropical fruits. IX. The respiration of bananas during ripening at tropical tempratures, Ann. Rev. Botany 4:264 (1940).

    Google Scholar 

  53. Woolley, J. T., Potato tuber tissue respiration and ventilation, Plant Physiol. 37:793 (1962)

    Article  PubMed  CAS  Google Scholar 

  54. Zeroni, M., P. H. Jerie and M. A. Hall, Studies on the movement and distribution of ethylene in Vicia faba L., Planta 134: 119 (1977).

    Article  CAS  Google Scholar 

  55. Zimmerman, U. and Steudle, The pressure dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia ultricularis, J. Membrane Biol. 16:331 (1974).

    Article  Google Scholar 

  56. Zimmerman, U., E. Steudle and P. I. Lelkes, Turgor pressure regulation in Valonia utriculares. Effects of cell wall plasticity and auxin, Plant Physiol. 58:605 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Burg, S.P., Kosson, R. (1983). Metabolism, Heat Transfer and Water Loss under Hypobaric Conditions. In: Lieberman, M. (eds) Post-Harvest Physiology and Crop Preservation. Nato Advanced Study Institutes Series, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0094-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0094-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0096-1

  • Online ISBN: 978-1-4757-0094-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics